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The tensor product postulate of quantum mechanics states that the Hilbert space of a composite system is
the tensor product of the components’Hilbert spaces. All current formalizations of quantum mechanics that
do not contain this postulate contain some equivalent postulate or assumption (sometimes hidden). Here we
give a natural definition of a composite system as a set containing the component systems and show how
one can logically derive the tensor product rule from the state postulate and from the measurement
postulate. In other words, our Letter reduces by one the number of postulates necessary to quantum
mechanics.
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In this Letter we derive the tensor product postulate
(which, hence, loses its status of postulate) from two other
postulates of quantum mechanics: the state postulate and
the measurement postulate. The tensor product postulate
does not appear in all axiomatizations of quantum mecha-
nics: it has even been called “postulate 0” in some literature
[1]. Awidespread belief is that it is a direct consequence of
the superposition principle, and it is hence not a necessary
axiom. This belief is mistaken: the superposition principle
is encoded into the quantum axioms by requiring that the
state space is a linear vector space. This is, by itself, is
insufficient to single out the tensor product, as other linear
products of linear spaces exist, such as the direct product,
the exterior or wedge product, or the direct sum of vector
spaces, which is used in classical mechanics to combine
state spaces of linear systems. These are all maps from
linear spaces to linear spaces but they differ in how the
linearity of one is mapped to the linearity of the others [2].
This belief may have arisen from the seminal book of Dirac
[3], who introduces tensor products (Chap. 20) by appeal-
ing to linearity. However, he adds the seemingly innocuous
request that the product among spaces be distributive
(rather, bilinear), which is equivalent to postulating tensor
products (or linear functions of them). It is not an
innocuous request. For example it does not hold where
the composite vector space of two linear spaces is described
by the direct product, e.g., in classical mechanics, for two
strings of a guitar: it is not distributive. (General classical
systems, not only linear ones, are also composed through
the direct product.) Of course, Dirac is not constructing an
axiomatic formulation, so his “sleight of hand” can be
forgiven. In contrast, von Neumann (Ref. [4] Chap. VI.2,
also Ref. [5]) introduces tensor products by noticing
that this is a natural choice in the position representation
of wave mechanics (where they were introduced in
Refs. [6,7]), and then explicitly postulates them in general:

“This rule of transformation is correct in any case for the
coordinate and momentum operators […] and it conforms
with the [observable axiom and its linearity principles],
we therefore postulate them generally.” [4]. More mathe-
matical or conceptually-oriented modern formulations
(e.g., Refs. [8–11]) introduce this postulate explicitly. An
interesting alternative is provided in Refs. [12,13]: after
introducing tensor products, Ballentine verifies a posteriori
that they give the correct laws of composition of proba-
bilities. Similarly, Peres uses relativistic locality [14].
While these procedures seemingly bypass the need to
postulate the tensor product, they do not guarantee that
this is the only possible way of introducing composite
systems in quantum mechanics. In the framework of
quantum logic, tensor products arise from some additional
conditions [15] which (in contrast to what is done here) are
not connected to the other postulates. In Refs. [16,17]
tensor products were obtained by specifying additional
physical or mathematical requirements.
Let us first provide a conceptual overview of our

approach. We start from the natural definition of a
composite system as the set of two (or more) quantum
systems. The composite system is therefore made of system
A and (joined with) system B and nothing else. The first
key insight is that the first two postulates of quantum theory
(introduced below) already assume that the preparation of
one system is independent from the preparation of another
(statistical independence). In fact, we cannot even talk
about a system in the first place if we cannot characterize it
independently. The second key insight is that, using the law
of composition of probabilities of independent events, we
can easilyfind a map M that takes the state of the
component systems and gives the composite state for the
statistically independent case. These insights are enough
to characterize mathematically the state space of the
composite: the linearity given by the Hilbert space, together
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with the fact that the composite system is fully described by
the observables of A and B, allows us to extend the
construction from the statistically independent composite
states to the general case (that includes entangled states). So
the work consists of two interrelated efforts: a physical
argument that starts from the first two postulates and leads
to the necessary existence of the composition map M and
its properties together with a formal argument that shows
how M leads to the tensor product.
This map M acts on the state spaces of the subsystems.

Each pure state is identified by a ray ψ, a subspace of the
system’s Hilbert space comprising all vectors ψ differing
by their (nonzero) modulus and phase: a one-dimensional
complex subspace (a complex plane). In the same way,
constraining the observable X to a particular outcome value
x0 means identifying the subspace comprising all non-
normalized eigenvectors jx0i of arbitrary phase such that
Xjx0i ¼ x0jx0i. The map M establishes a relationship
between the states of the subsystems and the composite,
so it is a map between subspaces, not vectors. Therefore,M
acts on the projective spaces, where all vectors within the
same ray are “collapsed” into a single point (i.e., a quotient
space in the equivalence class), removing the unphysical
“overspecification” of the phase and of the modulus. The
physical requirements on M are such that we can find a
bilinear map m between vectors that acts consistently with
M in terms of subspaces. This map m is the tensor product.
More in detail, the physical requirements of statistical

independence, together with the fact that one can arbitrarily
prepare the states of the subsystems, imply three conditions
on the map m: (H1) totality: the map is defined on all states
of the subsystems; (H2) bilinearity: the map is bilinear
thanks to the fundamental theorem of projective geometry;
(H3) span surjectivity: the span of the image of the map
coincides with the full composite Hilbert space. We then
prove that, if these three conditions H1, H2, and H3 hold,
then the map m is the tensor product, namely, the Hilbert
space of the composite system is the tensor product of the
components’ Hilbert spaces. The tensor product “postu-
late” hence loses its status of a postulate. An overview of all
these logical implications is given in Fig. 1. The rest of the
Letter contains the sketch of this argument, including all the
physical arguments outlined above. The Supplemental
Material [18] contains the mathematical details.

We start with the axiomatization of quantum mechanics
based on the following postulates (e.g., Refs. [8–11]):
(a) The pure state of a system is described by a ray ψ
corresponding to a set of nonzero vectors jψi in a complex
Hilbert space, and the system’s observable properties are
described by self-adjoint operators acting on that space.
(b) The probability that a measurement of a property X,
described by the operator with spectral decompositionP

x;i xjxiihxij=hxijxii (i a degeneracy index), returns a
value x given that the system is in state ψ is pðxjψÞ ¼P

i jhψ jxiij2=hxijxiihψ jψi (Born rule). (c) The state space
of a composite system is given by the tensor product of the
spaces of the component systems. (d) The time evolution of
an isolated system is described by a unitary operator acting
on a vector representing the system state, jψðtÞi ¼
Utjψðt ¼ 0Þi or, equivalently, by the Schrödinger equation.
The rest of quantum theory can be derived from these
axioms. While some axiomatizations introduce further
postulates, we will be using only (a) and (b) to derive
(c), so the above are sufficient to our aims.
Note that we limit ourselves to kinematically indepen-

dent systems, where all state vectors jψi in the system’s
Hilbert space H describe a valid state, unconditioned on
anything else. We call this condition “preparation inde-
pendence” and it should be noted that the tensor product
applies only in this case. For example, the composite
system of two electrons is not the tensor product, rather
the antisymmetrized tensor product, precisely because the
second electron cannot be prepared in the same state of the
first. We note that restrictions due to superselection rules
arise either from practical (not fundamental) limitations on
the actions of the experimenter [25–27] or from the use of
ill-defined quantum systems. In the example above, the
field is the proper quantum system and the electrons are its
excitations [28].
The definition of a composite system as containing only

the collection of the subsystems means that any preparation
of both subsystems independently must correspond to the
preparation of the composite system. Since states are
defined by postulate (a) as rays in the respective Hilbert
spaces, there must exist a map M: A × B → C that takes a
pair of states for the subsystems (A and B represent the
projective space, where each point represents all vectors
that identify the same state, and the Cartesian product is the
set of all possible pairs) and returns a state in the projective
space C for the composite. To visualize the geometrical
meaning of M directly within the Hilbert spaces, given a
ray (a complex plane) in each ofA and B,M returns a ray (a
complex plane) in C. Our final goal will be to find a mapm:
A × B → C that acts on vectors in the Hilbert spaces A, B,
and C consistently with M. Namely, mða; bÞ ¼ Mða; bÞ
where the underline indicates the elements in the projective
space. Again geometrically, m takes a vector in each of A
and B, and returns a vector in C and we want this to be
consistent with M such that vectors picked from the same

FIG. 1. Schematic depiction of the logical implications used in
this Letter [fundamental theorem of projective geometry
(FTPG)].
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rays will return vectors in the same ray. We will prove that
the map m is the tensor product. We focus on pure states
here: the argument can be extended to mixed states using
standard tools [12].
The map M must be injective: as said above, different

states of the subsystems must correspond, by definition of
composite system, to different states of the composite.
Moreover, preparation independence implies that M, and
hence m, must be total maps (condition H1): each sub-
system of the composite system can be independently
prepared and gives rise to a state of the composite. H1 is not
sufficient to identify the tensor product: by itself it does not
even guarantee that the map m is linear.
Postulate (b) contains the connection between quantum

mechanics and probability theory. It must then implicitly
contain the axiomatization of probability, e.g., see
Refs. [12,13,29]. One of the axioms of probability theory
(axiom 4 in Ref. [13]) asserts that the joint probability
events a and b given z is pða ∧ bjzÞ ¼ pðajzÞpðbjz ∧ aÞ.
Consider pða ∧ bjψ ∧ bÞ which represents the probability
of measurement outcomes a on system A and b on system
B given that system A was prepared in ψ and system B in b.
We have pða∧bjψ ∧bÞ¼pðajψ ∧b∧bÞpðbjψ ∧bÞ¼
pðajψ ∧bÞpðbjψ ∧bÞ. The Born rule tells us that pðajψ ∧
bÞ ¼ jhajψij2 and that pðbjψ ∧ bÞ ¼ jhbjbij2 ¼ 1, where
jai, jbi are the normalized eigenstates relative to outcomes
a and b, and jψi is the normalized state vector. We have

pða ∧ bjψ ∧ bÞ ¼ pðajψÞ; ð1Þ

pða ∧ bja ∧ ϕÞ ¼ pðbjϕÞ: ð2Þ

In other words, since the probability for a measurement on
one system depends only on its pure state, the Born rule
requires that the measurement of one system is independent
from the preparation of the other. We call this property
“statistical independence” [30]. It characterizes the mapM,
since Mða; bÞ corresponds to the composite state where A
and B are prepared in the states jai and jbi. Define
MbðaÞ ¼ Mða; bÞ. From the Born rule we find

jhMða; bÞjMðψ ; bÞiCj2 ¼ jhMbðaÞjMbðψÞiCj2
¼ jhajψiAj2; ð3Þ

where the first and second terms contain the inner product
in the composite space C. [This is not a new assumption: it
follows from the measurement postulate (b) for the
composite system.] This means that, when one subsystem
is prepared in an eigenstate of what is measured there, the
state space of the other is mapped preserving the square of
the inner product. This implies orthogonality and the
hierarchy of subspaces are preserved through Mb, making
Mb a collinear transformation by definition. Geometrically,
recall that Mb maps rays to rays. The fact that Mb is
collinear means that it also maps higher order subspaces to

higher order subspaces (lines to lines, planes to planes, and
so on) while preserving inclusion (if a line is within a plane,
the mapped line will be within the mapped plane). In this
case, the fundamental theorem of projective geometry [31]
applies, which tells us that a unique semilinear mapmb that
acts on the vectors exists in accordance withMb. Moreover,
conservation of probability further constrains it to be either
linear or antilinear. This tells us that the correspondingm is
either linear or antilinear in the first argument. Namely, if
Eq. (3) holds then

hajψi ¼ hmða; bÞjmðψ ; bÞi ð4Þ

or hajψi ¼ hmðψ ; bÞjmða; bÞi: ð5Þ

In this setting, the antilinear case (5) corresponds to a
change of convention (much like a change of sign in the
symplectic form for classical mechanics) and can be
ignored. Given a Hilbert space, in fact, we can imagine
replacing all vectors and all the operators with their
Hermitian conjugate, mapping vectors into duals
jψi† ¼ hψ j. These changes would effectively cancel out
leaving the physics unchanged: the two equations Ajwi ¼
Bjzi and hwjA† ¼ hzjB† are equivalent. (For example, in his
first papers Schrödinger used both signs in his equation:
effectively writing two equivalent equations with complex-
conjugate solutions [32]. Also Wigner pointed out this
equivalence [33], p. 152). We can repeat the same analysis
for the second argument ofm to conclude that it is a bilinear
map, condition (H2).
The last condition, span surjectivity (H3), follows

directly from the definition of a composite system. Since
it is composed only of the component systems, for any state
c of the composite system, we must find at least one pair
jai, jbi such that pða ∧ bjcÞ ≠ 0. Span surjectivity fol-
lows: namely, the span of the map applied to all states in the
component systems spans the composite system state
space. In other words, the composite does not contain
states that are totally independent of (i.e., orthogonal to) the
states of the components.
We have obtained the conditions H1, H2, and H3 from

the state postulate (a), the measurement postulate (b), and
the definitions of composite and independent systems. We
now prove that these three conditions imply that the (up to
now unspecified) composition rule m is the tensor product.
More precisely, given a total, span-surjective, bilinear map
m: A × B → C that maps the Hilbert spaces A, B of the
components into the Hilbert space C of the composite and
that preserves the square of the inner product, we find that C
is equivalent to A ⊗ B and that m ¼⊗.
Proof.—Step 1: the bases of the component systems are

mapped to a basis of the composite system. Because of
totality property (H1) and because the square of the
inner product is preserved, we can conclude that, given
two orthonormal bases fjaiig ∈ A and fjbjig ∈ B,
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jhmðai; bjÞjmðak; blÞij2 ¼ δikδjl, namely, fjmðai; bjÞig is
an orthonormal set in C. Moreover, the surjectivity property
(H3) guarantees that in C no vectors are orthogonal to this
set. This implies that it is a basis for C.
Step 2: use the universal property. The tensor product is

uniquely characterized, up to isomorphism, by a universal
property regarding bilinear maps: given two vector spaces
A and B, the tensor product A ⊗ B and the associated
bilinear map T: A × B → A ⊗ B have the property than
any bilinear map m: A × B → C factors through T
uniquely. This means that there exists a unique I, dependent
on m, such that I∘T ¼ m. In other words, the following
diagram commutes:

Since m: A × B → C is a bilinear operator (property H2),
thanks to the universal property of the tensor product we
can find a unique linear operator I: A ⊗ B → C such that
mða; bÞ ¼ Iða ⊗ bÞ. The set fIðai ⊗ bjÞwith jaii and jbji
orthonormal bases for A and Bg forms a basis for C, since
Iðai ⊗ bjÞ ¼ mðai; bjÞ and we have shown above that the
latter is a basis. Thus,

hIðai ⊗ bjÞjIðak ⊗ blÞiC ¼ hmðai; bjÞjmðak; blÞiC
¼ δikδjl ¼ hai ⊗ bjjak ⊗ bli⊗; ð6Þ

where we used the orthonormality of the bases and the fact
that jai ⊗ bji is a basis of the tensor product spaceA ⊗ B.
Since the function I is a linear function that maps an
orthonormal basis ofA ⊗ B to an orthonormal basis of C, I
is a an isomorphism (a bijection that preserves the
mathematical structure) between A ⊗ B and C. As C ≅
A ⊗ B are isomorphic as Hilbert spaces, they are math-
ematically equivalent: c ∈ C and I−1ðcÞ represent the same
physical object. In this sense, we can loosely say that I is
the identity, as it connects spaces that are physically
equivalent. So we can directly use the tensor product to
represent the composite state space. This means that the
map m: A × B → C is equivalent to the map ⊗: A × B →
A ⊗ B in the sense that m∘I−1 ¼⊗. ▪
A few comments on the proof: it is based on the universal

property of the tensor product, which uniquely character-
izes it. In step 1 we show that the bilinear map m maps
subsystems’ bases into the composite system basis. We also
know that there exists a tensor product map T ¼⊗ that can
compose the vectors in A and B. In step 2 we use the
universal property: since m is a bilinear map, we are
assured that there exists a unique I such that I∘T ¼ m.
Since we show that I is an isomorphism, then I bijectively
maps vectors in C onto vectors in the tensor product space.
Namely, m ¼ T ¼⊗.

We conclude with some general comments. The tensor
product structure of quantum systems is not absolute, but
depends on the observables that are accessible [26,27]. This
is due to the fact that an agent that has access to a set of
observables will define quantum systems differently from
an agent that has access to a different set of observables.
Where one agent sees a single system, an agent that
has access to less refined observables (and is then limited
by some superselection rules) can consider the same system
as composed of multiple subsystems.
It has been pointed out before that the quantum postu-

lates are redundant: in Refs. [9,34] it was shown that the
measurement postulate (b) can be derived from the others
(a), (c), (d). Here instead we have shown how the tensor
product postulate (c) can be logically derived from the state
postulate (a), the measurement postulate (b), and a reason-
able definition of independent systems, and we have
described the logical relations among them. Of course,
we do not claim that this is the onlyway to obtain the tensor
product postulate from the others.

L. M. acknowledges useful discussions with M. Ozawa,
P. Zanardi, S. Lloyd, D. Zeh, G. Auletta, A. Aldeni, and
funding from the MIUR Dipartimenti di Eccellenza 2018-
2022 Project No. F11I18000680001, Attract project
through the Eu Horizon 2020 research and innovation
programme under Grant Agreement No. 777222. This
material is based upon work supported by the U.S.
Department of Energy, Office of Science, National
Quantum Information Science Research Centers.
Superconducting Quantum Materials and Systems Center
(SQMS) under the contract No. DE-AC02-07CH11359.
G. C. and C. A. A. would like to thank M. J. Greenfield for
reviewing the mathematical details and acknowledge fund-
ing from the MCubed program of the University of
Michigan. G. C. and C. A. A.’s contribution to this work
is part of a larger project, Assumptions of Physics [35],
which aims to identify a handful of physical principles from
which the basic laws can be rigorously derived.

[1] W. H. Zurek, Quantum Darwinism, Nat. Phys. 5, 181
(2009).

[2] For example, in the tensor product a ⊗ ðbþ cÞ ¼ a ⊗ bþ
a ⊗ c while in the direct product a × ðbþ cÞ ¼
a × bþ 0 × c, where 0 is the zero vector. Also, in the
tensor product rða ⊗ bÞ ¼ ðraÞ ⊗ b ¼ a ⊗ ðrbÞ while in
the direct product rða × bÞ ¼ ra × rb, where r is a scalar.

[3] P. A. M. Dirac, The Principles of Quantum Mechanics
(Clarendon Press, Oxford, 1966).

[4] J. von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton, NJ,
1955).

[5] J. M. Jauch, in Foundations of Quantum Mechanics
(Addison-Welsey, Reading, MA, 1968), p. 176.

[6] H. Weyl, Gruppentheorie und Quantenmechanik (Hirzel,
Leipzig, 1928); translated by H. P. Robertson, in The Theory

PHYSICAL REVIEW LETTERS 126, 110402 (2021)

110402-4

https://doi.org/10.1038/nphys1202
https://doi.org/10.1038/nphys1202


of Groups and Quantum Mechanics (Methuen, London,
1931); reprinted by Dover, p. 91.

[7] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-
mechanical description of physical reality be considered
complete?, Phys. Rev. 47, 777 (1935).

[8] M. Ozawa, Uncertainty relations for noise and distur-
bance in generalized quantum measurements, Ann. Phys.
(Amsterdam) 311, 350 (2004).

[9] L. Masanes, T. D. Galley, and M. P. Müller, The measure-
ment postulates of quantum mechanics are operationally
redundant, Nat. Commun. 10, 1361 (2019).

[10] W. K. Wootters, Optimal information transfer and real-
vector-space quantum theory, edited by G. Chiribella and
R. Spekkens, in Quantum Theory: Informational Founda-
tions and Foils, Fundamental Theories of Physics Vol. 181
(Springer, Dordrecht, 2016).

[11] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, England, 2000).

[12] L. E. Ballentine, Quantum Mechanics, a Modern Develop-
ment (World Scientific, Singapore, 2014).

[13] L. E. Ballentine, Probability theory in quantum mechanics,
Am. J. Phys. 54, 883 (1986).

[14] A. Peres, Classical interventions in quantum systems. II.
Relativistic invariance, Phys. Rev. A 61, 022117 (2000).

[15] T. Matolcsi, Tensor product of Hilbert lattices and free
orthodistributive product of orthomodular lattices, Acta Sci.
Math. (Szeged) 37, 263 (1975).

[16] F. M. Ciaglia, A. Ibort, and G. Marmo, On the notion of
composite system, edited by F. Nielsen and F. Barbaresco, in
Geometric Science of Information, Lecture Notes in
Computer Science Vol. 11712 (Springer, New York, 2019).

[17] D. Aerts and I. Daubechies, Physical justification for using
the tensor product to describe two quantum systems as one
joint system, Helv. Phys. Acta 51, 661 (1979).

[18] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.126.110402 for the
mathematical details of the proof. It includes Refs. [19–24].

[19] A. Holevo, Probabilistic and Statistical Aspects of Quantum
Theory (North Holland, Amsterdam, 1982).

[20] S. B. Giddings, Hilbert space structure in quantum gravity: An
algebraic perspective, J. High Energy Phys. 12 (2015) 001.

[21] H. Roos, Independece of local algebras in quantum field
theory, Commun. Math. Phys. 16, 238 (1970).

[22] Z. Ji, A. Natarajan, T. Vidick, J. Wright, and H. Yuen,
MIP*=RE, arXiv:2001.04383.

[23] P. Teller, An Interpretive Introduction to Quantum
Field Theory (Princeton University Press, Princeton, NJ,
1997).

[24] M. Redhead and P. Teller, Particles, particle labels, and
quanta: The toll of unacknowledged metaphysics, Found.
Phys. 21, 43 (1991).

[25] Y. Aharonov and L. Susskind, Charge superselection rule,
Phys. Rev. 155, 1428 (1967).

[26] P. Zanardi, Virtual Quantum Subsystems, Phys. Rev. Lett.
87, 077901 (2001).

[27] P. Zanardi, D. A. Lidar, and S. Lloyd, Quantum Tensor
Product Structures are Observable Induced, Phys. Rev. Lett.
92, 060402 (2004).

[28] We emphasize that the kinematic independence is inequi-
valent to dynamical independence (or isolation). Indeed if
two systems interact, their interaction may lead to dynami-
cal restrictions in the state spaces. Here we will not consider
dynamical evolution, which is contained in postulate (d).

[29] R. T. Cox, The Algebra of Probable Inference (J. Hopkins
Press, 1961).

[30] One can also prove that the measurements on the compo-
nents are independent as well (see Supplemental Material
[18]), but we only strictly need preparation here.

[31] E. Artin, Geometric Algebra (Interscience Publishers Inc.,
New York, 1957).

[32] E. Schrödinger, Ann. Phys. (Berlin) 102, 81 (1926); English
translation in E. Schrödinger, Collected papers on Wave
Mechanics (Blackie & Son, London, 1928).

[33] E. Wigner, On unitary representations of the inhomo-
geneous Lorentz group, Ann. Math. 40, 149 (1939).

[34] J. B. Hartle, Quantum mechanics of individual systems,
Am. J. Phys. 36, 704 (1968).

[35] https://assumptionsofphysics.org/.

PHYSICAL REVIEW LETTERS 126, 110402 (2021)

110402-5

https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1016/j.aop.2003.12.012
https://doi.org/10.1016/j.aop.2003.12.012
https://doi.org/10.1038/s41467-019-09348-x
https://doi.org/10.1119/1.14783
https://doi.org/10.1103/PhysRevA.61.022117
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.110402
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.110402
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.110402
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.110402
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.110402
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.110402
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.110402
https://doi.org/10.1007/JHEP12(2015)099
https://doi.org/10.1007/BF01646790
https://arXiv.org/abs/2001.04383
https://doi.org/10.1007/BF01883562
https://doi.org/10.1007/BF01883562
https://doi.org/10.1103/PhysRev.155.1428
https://doi.org/10.1103/PhysRevLett.87.077901
https://doi.org/10.1103/PhysRevLett.87.077901
https://doi.org/10.1103/PhysRevLett.92.060402
https://doi.org/10.1103/PhysRevLett.92.060402
https://doi.org/10.2307/1968551
https://doi.org/10.1119/1.1975096
https://assumptionsofphysics.org/
https://assumptionsofphysics.org/

