
 

Comment on “Distinction of Electron Dispersion in
Time-Resolved Photoemission Spectroscopy”

In Ref. [1], it is proposed to relate the interferometric
photoemission delay to the photoelectron (PE) transport
time, based on the PE phase ξ and effective mass meff .
Generally, the concept of effective mass is applicable
neither to the PE transport in crystals nor to the PE
interaction with light. While formally meff can be defined
for any bulk Bloch state [2], for the PE it is undefined when
(i) the PE energy lies in a kk-projected gap, so the outgoing
wave ΨPE contains no propagating waves (real k⊥);
(ii) several propagating Bloch states contribute comparably
to ΨPE; (iii) the PE mean free path (MFP) is small enough
so the weight of the evanescent waves (complex k⊥) [3] in
the surface region is comparable to that of the propagating
wave(s). The ubiquity of the gaps and the multi-Bloch-
wave character of ΨPE are well documented for a variety of
materials [4–11].
These essential features are not allowed for in the basic

Eq. (1) of Ref. [1], which depends on the ratio between
energy-dependent meff . In cases (i)–(iii) Eq. (1) becomes
inapplicable because either meff is undefined or PE is
characterized by more than one meff . This is characteristic
of all real solids, as illustrated for Mg in Fig. 1(a) by the
complex band structure (CBS) [3] responsible for photo-
emission [4]: The role of each Bloch wave is characterized
by its contribution to the time-reversed LEED state Φ�

LEED
(low energy electron diffraction). We consider the setup of
Ref. [1]: ℏωIR ¼ 1.6 eV, 2q ¼ 50, and 2p initial states at
−50 eV. The 2qþ 1 final state (31.6 eV) consists of two
propagating waves, while the 2q − 1 state (28.4 eV) com-
prises only one. However, for 28.4 eV, down to a depth of 15
a.u. the evanescent waves [12] strongly contribute to ΨPE, as

is evident from the density profile of Φ�
LEED in Fig. 1(c). The

depth of 15 a.u. is larger than the MFP, so the evanescent
waves are important both in the PE transport and in forming
the sidebands. Thus, even though there is only one real k⊥,
an effective mass cannot be ascribed to such wave.
Furthermore, the strong admixture of the evanescent waves
makes the notion of a time delay per lattice constant δτas
inapplicable and Eqs. (7) and (8) meaningless.
Now consider the hypothetical case when ΨPE is a Bloch

wave: ΨPE ¼ P
Gk ψ

k⊥
Gk
ðzÞ expðiGkrkÞ, Gk being surface

reciprocal lattice vectors. Equation (2) of Ref. [1] assumes
that a propagation phase ξ ¼ kΔz can be introduced for
ΨPEðrÞ. This is justified only if one Gk-harmonic dominates
ΨPEðrÞ. In reality, this is almost never the case, as illustrated
in Figs. 1(b) and 1(c): The weight of Gk ≠ 0 waves is
comparable to (and often larger than) that of the Gk ¼ 0

component. Because each Gk wave acquires its own phase ξ
the propagation phase is ill defined for a Bloch wave.
Thus, the conclusion that “interferometric spectroscopy

addresses the material-dependent change of PE phase
velocities” [1] contradicts the well-documented multi-
plane-wave nature of Bloch states, and the notion of
effective mass conflicts both with the multi-Bloch-wave
structure of ΨPE and with the surface sensitivity of
photoemission. The concepts of PE phase and effective
mass are plausible for one-dimensional models but are
inapplicable to real solids, which makes the method to
extract photoemission delays based on Eq. (1) unreliable.
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FIG. 1. (a) Band structure of Mg along ΓAΓ (black lines) and
conducting CBS (red): dispersion Re k⊥ðEÞ of Φ�

LEED constitu-
ents [8] for absorbing potential V i ¼ 0.2 eV. Thickness shows
flux carried by the Bloch wave [10]. Arrows show the 2q� 1
energies. (b),(c) Density ρðzÞ of Φ�

LEED (with V i ¼ 0) for 2qþ 1

(b) and 2q − 1 (c): full density (black) and the Gk ¼ 0 contri-
bution (red). Gray area shows the Gk ≠ 0 contribution.
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