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Thermally activated transitions are ubiquitous in nature, occurring in complex environments which are
typically conceived as ideal viscous fluids. We report the first direct observations of a Brownian bead
transiting between the wells of a bistable optical potential in a viscoelastic fluid with a single long
relaxation time. We precisely characterize both the potential and the fluid, thus enabling a neat comparison
between our experimental results and a theoretical model based on the generalized Langevin equation. Our
findings reveal a drastic amplification of the transition rates compared to those in a Newtonian fluid,
stemming from the relaxation of the fluid during the particle crossing events.
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Understanding the role of fluctuations in the dynamics of
nonlinear systems with multiwell energy landscapes is of
paramount importance in many disciplines of both funda-
mental and applied sciences [1,2]. For instance, it has been
recognized that thermal noise is responsible for the acti-
vation of transitions in a wide variety of processes at
mesoscopic scale, such as the magnetization reversals in
thin films [3], molecular reactions [4], protein folding [5],
colloid adsorption at fluid-fluid interfaces [6], drug binding
[7], photochemical isomerization [8], to name but a few.
The transition rates in such situations are well described by
Kramers’ escape rate theory [9], which is based on the
dynamics of a Brownian particle in a metastable state,
coupled to its environment through a constant drag coef-
ficient, γ0, and thermal white noise. In particular, in the
overdamped limit and in one dimension, the mean time to
cross a potential barrier of height U, is given by

τK ¼ 2πγ0ffiffiffiffiffiffiffiffiffiffiffiffiffijκSjκW
p exp

�
U
kBT

�
; ð1Þ

where kB is the Boltzmann constant, T is the environment
temperature, and κW > 0 and κS < 0 are the local curva-
tures or stiffnesses of the potential well where the particle
initially equilibrates, and of the barrier, respectively.
Equation (1) has been experimentally verified by directly
visualizing the motion of colloidal particles in water in
bistable optical potentials [10,11]. Optical trapping experi-
ments have quantitatively elucidated further aspects pre-
dicted by numerous noise-activated escape theories
[1,9,12–16], such as Maxwell-like relations [17], stochastic
transitions in periodic potentials [18], Kramers turnover in
the intermediate underdamped regime [19], escape-rate
optimization by energy-landscape shaping [20], and very
recently, the accurate characterization of the transition path
dynamics [21].

An important issue that arises when measuring barrier-
crossing rates in multidimensional systems, e.g., conforma-
tional changes of biomolecules [5,22–25], is the emergence
of memory due to a coarse-grained description of their
dynamics [26–29]. Such non-Markovian effects were
pointed out in a seminal theoretical work by Grote and
Hynes in 1980 in the realm of condensed phase reactions
[13,30], where a frequency-dependent friction was intro-
duced. It predicts an enhancement of the reaction rate with
respect to Eq. (1), which was later explored in the context
of chemical kinetics [4,26,31,32]. More recently, visco-
elastic fluids, widespread in many soft matter systems of
biological and technological importance [33–35], have
drawn the attention of many researchers, since they give
rise to intriguing phenomena at the mesoscale due to their
frequency-dependent flow properties [36–40].
The timescales of Brownian particles embedded in

viscoelastic fluids lack a clear-cut separation from time-
scales of the surroundings due to their complex micro-
structure, thereby resulting in memory friction with large
relaxation times. Their motion is commonly described by
the generalized Langevin equation [41] with nonequili-
brium transient effects that markedly manifest themselves
in the presence of driving forces [42–45]. Although
generalizations of Kramers’ rate theory involving long-
memory friction have been developed in the past in
theoretical [46–49] and numerical works [28,29,50–52],
their predictions remain experimentally largely unexplored.
In this work, we use optical micromanipulation [53–55]

to show the first experimental realization of thermally-
activated transitions of a bead across a bistable potential in
a viscoelastic micellar fluid with monoexponential memory
friction. We find a significant increase in the crossing rates
over the barrier separating the two local minima, as
compared to those in a purely viscous environment. This
is in quantitative agreement with a theoretical description
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based on the generalized Langevin equation, which unveils
the mechanism underlying the amplification of the barrier
crossing rates.
In our experiments, a spherical silica bead of diameter

dp ¼ 0.99 μm is trapped by a double-well optical potential
in a viscoelastic fluid. The potential is sculpted by two
optical tweezers (0.532 nm wave length), using a water-
immersion objective (60×, 1.2 NA), separated by a distance
δx ¼ 0.8� 0.01 μm along the focal plane, according to the
schematic shown in Fig. 1(a). At this distance the particle
can transit between two neatly defined potential wells with
characteristic times of the order of seconds. The particle is
trapped at temperature T ¼ 22 °C, and kept at least 10 μm
safe from any hydrodynamic interactions with other par-
ticles or with the walls of the sample cell [56]. The resulting
potential is characterized by two stable points (A and B)
and an unstable saddle point (S), with barrier heights UA
and UB, whose values can be adjusted by the total power of
the tweezers. We explored three different powers,
0.84�0.05mW, 1.11� 0.05 mW, and 1.37� 0.05 mW,
measured at the objective entrance, which are referred to as
experiments I, II, and III, respectively. All the experiments
were performed using a single bead in a fixed position
inside the sample cell, which allowed us to estimate in situ
the potential and all the relevant parameters. The uncer-
tainties of such estimates were determined by means of
error propagation.
The viscoelastic fluid consists of an equimolar solution

of cetylpyridinium chloride and sodium salicylate at 5 mM
in deionized water, which exhibits a relatively low viscosity
and a single relaxation time [57]. At such concentration, the

fluid is transparent to visible light. More details about the
setup, the sample preparation, and the fluid characterization
can be found in the Supplemental Material [58]. Its
relaxation modulus is described by a monoexponential
function [59], which is a well-established model for the
linear viscoelasticity of wormlike micelles [60,61],

GðtÞ ¼ 2η∞δðtÞ þ
η0 − η∞

τ0
exp

�
−

t
τ0

�
: ð2Þ

In Eq. (2), η∞, η0, and τ0 represent the solvent viscosity, the
zero-shear viscosity, and the relaxation time of the fluid
[61,62], respectively. In absence of a trapping potential, the
particle would freely diffuse in the longtime limit like in a
Newtonian fluid with constant viscosity η0 [63,64]. This
provides a criterion to directly compare the barrier crossing
process in the viscoelastic fluid with that in a viscous fluid
of the same zero-shear viscosity.
In practice, the viscoelastic properties of the micellar fluid

were characterized in situ by passive microrheology [54,65]
with the same silica bead used in all the double-well experi-
ments. We computed the positional autocorrelation function
of the particle trapped by one of the tweezers making up
the double-well potential, from which we obtained
η∞¼0.0040�0.0001Pas, η0¼0.0420�0.0052Pas, and
τ0 ¼ 1.148� 0.067 s (method I in the Supplemental
Material). Such values are in agreement with those found
by a second method based on the motion of a freely
diffusing polystyrene bead of diameter 2 μm (method II
in the Supplemental Material): η∞¼ 0.0038�0.0003 Pas,
η0 ¼ 0.0453� 0.0102 Pa s, and τ0 ¼ 1.206� 0.269 s. In
Fig. 1(b) we plot the frequency-dependent viscosity of the
fluid, ηðsÞ, which is directly determined by this method and
corresponds to the Laplace transform of Eq. (2). In the inset
we also plot the corresponding storage and loss modulus.
Our results are in line with reported macroscopic data [66],
which is not always the case since the response of complex
fluids may depend on the size of the microrheological
probe [67,68].
We track the 2D particle position, ðx; yÞ, with a spatial

resolution of less than 6 nm at a sampling rate of 1000 Hz
using standard video microscopy [69,70]. Once the particle
is confined within the double-well potential, it exhibits
thermally activated transitions between wells A and B
through the saddle point S, as illustrated by the intermittent
jumps of a typical trajectory plotted in Fig. 2(a). Note that
escape events from A to B (A → B) must be counted
separately from those taking place from B to A (B → A)
because optical double wells are in general asymmetric
[10,11,17,21]. Thus, the barrier-crossing time, τ, is defined
as the time spent by the particle in metastable equilibrium
within a given well plus the time to spontaneously jump
over the barrier to finally reach the neighborhood of the
contiguous energy minimum. In Figs. 2(b) and 2(c) we
show the normalized histograms of τ for transitions A → B

FIG. 1. (a) Double-well optical potential. A silica bead with
diameter dp ¼ 0.99 μm is trapped by two orthogonally polarized
optical tweezers (beams 1 and 2) in a micellar viscoelastic fluid.
The resulting potential, UðxÞ (red solid line), is well described by
the sum of two Gaussian functions (dashed curves) according to
Eq. (3), giving rise to two stable points (A and B) and a saddle
unstable point (S) with barrier heights UA and UB that the particle
is able to surmount by thermal fluctuations. The particle is
trapped 10 μm above the bottom coverslip. (b) Viscosity of the
micellar solution as a function of the Laplace frequency, obtained
by passive microrheology (diamonds). The solid line represents
the nonlinear fitting to the Laplace transform of Eq. (2), from
which the corresponding storage and loss modulus (dashed and
solid line in the inset, respectively) are derived (see Supplemental
Material).
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and B → A in experiment 1, respectively. By means of
maximum likelihood estimation, we find that the distribu-

tion of τ is well described by ρðτÞ ¼ ½τðveÞexp �−1 exp½−τ=τðveÞexp �,
with τðveÞexp the mean crossing time, as depicted by the red
solid lines in Figs. 2(b) and 2(c). Such an exponential
behavior suggests that the activated jumps can be consid-
ered as a Poisson process [10]. Hence, the asymmetry of the
double well in a single experiment allows us to analyze
transitions A → B independently of B → A, each one
characterized by a set of values of the well curvatures
and the energy barrier.
The experimental potential is retrieved from the

particle trajectories using the equilibrium distribution
ρðx; yÞ ¼ ρ0 exp½−Uðx; yÞ=ðkBTÞ�. As an example, from
the data of experiment 1, we obtain the 2D potential
Uðx; yÞ, plotted in Fig. 2(d). Figure 2(e) shows the 1D
potential across the colinear critical points A, S, and B,
UðxÞ ¼ Uðx; y ¼ 0Þ, where the solid line represents the
fitting to the double-Gaussian potential,

UðxÞ¼ u1 exp

�
−
ðx−μ1Þ2

σ21

�
þu2 exp

�
−
ðxþμ2Þ2

σ22

�
þu0;

ð3Þ

where u1;2 < 0 correspond to the potentials of each
individual tweezers, while μ1;2 and σ1;2 are their positions
and widths, respectively, and u0 is a constant energy value.
The resulting values of the potential stiffness around the
critical points, κfA;B;Sg ¼ ∂2UðxfA;B;SgÞ=∂x2, and the
energy barriers, UfA;Bg, for the whole set of experiments
are listed in Table S4 in the Supplemental Material. The
double well is neatly defined only for a small range of
separating distances δx, but in general a third elusive well
may appear near the center of the potential [71,72].

In Fig. 3(a) we plot the experimental mean crossing time,

τðveÞexp , of a bead in the viscoelastic micellar fluid (red
squares) and in water (green circles) against Kramers’
theoretical predictions, τK , given by Eq. (1). While the
mean crossing times in water agree well with Kramers’
theory (dotted line), as verified in previous studies
[10,11,21], significant deviations are observed under vis-
coelastic conditions. To assess these discrepancies, we
focus on the overdamped particle dynamics in the visco-
elastic fluid, subjected to the double-well potential, which
is described by the generalized Langevin equation

Z
t

−∞
Γðt − sÞ_xðsÞds ¼ −U0ðxðtÞÞ þ ζðtÞ; ð4Þ

where the term on the left-hand side represents the history-
dependent friction exerted by the fluid at time t, and ζðtÞ is
a Gaussian stochastic force accounting for thermal fluctu-
ations. We assume that ζðtÞ satisfies hζðtÞi ¼ 0, and
hζðtÞζðsÞi ¼ kBTΓðjt − sjÞ [41]. Moreover, the Laplace
transform of the memory kernel ΓðtÞ in Eq. (4) is related
to the frequency-dependent viscosity ηðsÞ plotted in
Fig. 1(b) via Γ̃ðsÞ ¼ 3πdpηðsÞ. The dissipation at short
and long timescales is characterized by the friction coef-
ficients γ∞ ¼ 3πdpη∞ and γ0 ¼ 3πdpη0, respectively,
whereas elastic effects are quantified by ðγ0 − γ∞Þ=τ0.
Based on these assumptions, we solve numerically
Eq. (4) using the experimental information of UðxÞ, γ0,
γ∞, and τ0 over a time interval corresponding to the
duration of each experiment (40 min). These simulations
are performed for 10 000 initial equilibrium positions.
The details about the simulations are provided in the
Supplemental Material. The resulting mean crossing times,

denoted as τðveÞsim , are plotted in Fig. 3 (blue diamonds).
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FIG. 2. Thermally activated transitions of a colloidal bead
(dp ¼ 0.99 μm), embedded in a micellar viscoelastic fluid, across
an optical bistable potential for experiment 1 (see main text):
(a) time evolution of the trajectory along x, (b) normalized
histogram of the crossing times from A to B, and (c) from B to A,
respectively. The solid red lines depict the maximum likelihood
estimation using an exponential model. (d) Experimental 2D
potential, and (e) 1D potential across the critical points A, S, B.
The dots represent the experimental data while the solid line
corresponds to a fitting to Eq. (3).
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FIG. 3. (a) Experimental mean crossing times of the bead in a
viscoelastic fluid (red squares) and in water (green circles) versus
the Kramers prediction for a Newtonian fluid with constant
viscosity η0. Blue diamonds represent the results of the numerical
simulations of Eq. (4). The dotted line depicts perfect agreement
with Kramers’ theory. (b) Corresponding experimental mean
crossing times versus theoretical prediction for a viscoelastic
fluid given by Eq (5). The dotted line depicts perfect agreement
between experiment and theory.

PHYSICAL REVIEW LETTERS 126, 108001 (2021)

108001-3



At this point, we find a good agreement between τðveÞexp and

their corresponding theoretical estimates τðveÞsim , which along
with their drastic contrast with τK, hint at the importance of
viscoelasticity on thermal activation over the barrier.
From Eq. (4), we also derive an explicit expression for

the mean barrier-crossing time in the viscoelastic fluid,

τðveÞth , using Kramers’ rate theory extended to Brownian
motion with arbitrarily large memory [46,73]. By comput-
ing the diffusive probability current across the potential
barrier, jS, and the occupation number in a potential well,

nW , we find that τðveÞth ¼ nW=jS, can be expressed as

τðveÞth ¼ β

�
α;
τ0
τS

�
τK; ð5Þ

where τK is the Kramers time given by Eq. (1), and

β

�
α;
τ0
τS

�
¼ 2α

1 − τS
τ0
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − τS

τ0
Þ2 þ 4ατS

τ0

q ; ð6Þ

is a dimensionless factor which accounts for the coupling
with the viscoelastic environment. See the Supplemental
Material for more details about the derivation. In Eq. (6),
α ¼ γ∞=γ0 is the ratio between the two friction coefficients,
whereas τS ¼ γ0=jκSj represents the slowest viscous time-
scale of the particle when moving in the neighborhood of
the saddle point. We realize that for either α ¼ 1 or
τ0=τS → 0, β ¼ 1, therefore Eq. (5) reduces to Eq. (1),
i.e., the barrier-crossing time in a Newtonian fluid with
constant viscosity η0. On the other hand, for γ0 > γ∞ and
τ0 > 0, which are the conditions describing viscoelastic

behavior, it can be checked that β < 1, hence τðveÞth < τK for
all values of the local curvature κS, thereby quantifying the
viscoelasticity-induced reduction in the transition times.
In Fig. 3(b) we verify that the experimental values of the

mean transition times, τðveÞexp (red squares), and their respective

theoretical predictions, τðveÞth , are consistent, where the identity
(dotted line) represents the ideal prediction by Eq. (5). It
should be noted that the numerical values of the mean

crossing time, τðveÞsim , and those given by Eq. (5), are in good
agreement in spite of their different assumptions. While the
numerical results are computed from the finite-time dynamics
of a Brownian particle exploring the whole double-well

potential, τðveÞth is derived for an ensemble of independent
particles starting in equilibrium within a well and then
escaping over the barrier. This confirms that the experimental
transitions A → B and B → A are independent of each other.
Furthermore, in Fig. 4 we plot the ratio β ¼ τðveÞexp =τK

versus τ0=τS, thus verifying that the coupling of the particle
with the viscoelastic surroundings gives rise to a reduction
in the mean crossing time in quantitative agreement with
Eq. (6). For comparison, we also plot the results of the
particle crossing events in water, for which we verify that
β ≈ 1, as expected for a Newtonian fluid with constant

viscosity (α ¼ 1 and τ0=τS → 0). These findings suggest
that when the fluid relaxation takes place on a timescale
τ0 ≪ τS, the particle friction around the unstable point S is
dominated by the low-frequency values of the viscosity
ηðsÞ in Fig. 1(b). However, as τ0=τS increases, the fluid
does not have enough time to fully relax before the particle
is activated by a thermal fluctuation over the barrier. Hence,
the friction experienced by the particle during the escape is
strongly affected by higher-frequency components of the
viscosity shown in Fig. 1(b). This results in a lower
resistance to the particle crossing over the barrier, i.e., β
decreases monotonically with increasing τ0=τS. Note that
under our experimental conditions, the values of τS are
comparable to τ0, which allows us to clearly resolve the
effect of the fluid viscoelasticity on the escape process of
the particle (β ≈ 0.2).
As previously suggested for chemical reactions [13],

under non-Markovian conditions activated transitions are
triggered by the short-time friction with the solvent. To
verify this mechanism in the present case, we estimate the
effective particle mobility, μeff , from the trajectory of the
particle along the barrier crossings, such as the one depicted
in the inset of Fig. 4. Then, we compare it with the
frequency-dependent particle mobility, which can be
derived from Fourier transform of Eq. (4), considering
the memory kernel given by Eq. (2),

μω ¼ γ0 þ ω2τ20γ∞
γ20 þ ω2τ20γ

2
∞
þ i

ðγ0 − γ∞Þωτ0
γ20 þ ω2τ20γ

2
∞
: ð7Þ

Taking into account that the potential around S is harmonic
with stiffness κS, the mean time to go from a position xS to a

FIG. 4. Ratio between the experimental mean crossing time in a
viscoelastic fluid and the expected Kramers time for the same
zero-shear viscosity, as a function of τ0=τS. Filled upward and
downward triangles represent transitions A → B and B → A in
the viscoelastic fluid, while open triangles correspond to tran-
sitions A → B and B → A in water. The solid line is the
theoretical prediction by Eq. (5). Inset: example of a transition
A → B in the viscoelastic fluid. The arrow depicts the region
around S where the particle mobility suddenly rises from μeff ≈
μ0 to μeff ≈ μ∞.
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neighboring point xS þ δ can be approximated by
Δt ¼ ðκSμeffÞ−1 ln½1þ ðδ=xSÞ�. Using δ ¼ 0.15 μm, for
experiment 1, we find the mean effective mobility μeff ≈
25.7 μmpN−1 s−1, which is one order of magnitude greater
than the zero-frequency mobility μ0 ¼ γ−10 ¼ 2.6�
0.3 μmpN−1 s−1, and very close to the high-frequency
mobility μ∞ ¼ γ−1∞ ¼ 26.8� 0.7 μmpN−1 s−1, described
by Eq. (7). This is in stark contrast to the characteristic
mobilities in A and B, which for experiment 1 are μeff ≈
2.7 μmpN−1 s−1 and μeff ≈ 3.1 μmpN−1 s−1, respectively,
i.e., closer to μ0. Therefore, unlike the activated transition
of a particle with constant mobility in a Newtonian fluid,
the high-frequency viscosity of a viscoelastic fluid gives
rise to a lower friction around the unstable saddle point,
thereby enhancing the probability of surmounting the
barrier.
In summary, we have investigated the effect of visco-

elastic memory friction on the transitions of a micron-sized
bead in a double-well optical potential, and in particular, on
the mean time that the particle takes to move from one well
to the other. Our findings clearly demonstrate that the mean
crossing times in a model fluid with monoexponential
memory are shorter than those expected in a Newtonian
fluid of similar zero-shear viscosity. This effect was
quantified by a factor β ≤ 1 that depends on the fluid
properties and on the curvature of the potential barrier,
whose values are predicted by a theoretical approach based
on the generalized Langevin equation. We show that a
nonhomogeneous frequency-dependent mobility that dras-
tically increases around the energy barrier is responsible for
these fast transitions. This study provides a major under-
standing of barrier crossing processes under non-
Markovian conditions that should impact our comprehen-
sion of plenty of transport mechanisms in nature, com-
monly occurring in non-Newtonian fluids, such as those
involving microorganisms and biomolecules [74–77], as
well as activated transitions in other types of nonequili-
brium systems with intrinsic memory, e.g., active matter
[78] and glassy materials [79]. Further experimental and
theoretical efforts could help to address other aspects at
different physical conditions, such as particle escape over
small barriers [80], in complex fluids with nonexponential
relaxations [81], or with particles smaller than the charac-
teristic length scale of the medium [68]. Finally, this
phenomenon can be exploited to envisage new approaches
to selectively deliver microscopic assays in artificially
generated potential landscapes [82–89].
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