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Systems with quasiperiodic disorder are known to exhibit a localization transition in low dimensions.
After a critical strength of disorder, all the states of the system become localized, thereby ceasing the
particle motion in the system. However, in our analysis, we show that in a one-dimensional dimerized
lattice with staggered quasiperiodic disorder, after the localization transition, some of the localized
eigenstates become extended for a range of intermediate disorder strengths. Eventually, the system
undergoes a second localization transition at a higher disorder strength, leading to all states being localized.
We also show that the two localization transitions are associated with the mobility regions hosting the
single-particle mobility edges. We establish this reentrant localization transition by analyzing the
eigenspectra, participation ratios, and the density of states of the system.
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Introduction.—The phenomenon of localization of quan-
tum particles which is directly related to the transport
properties has been a topic of paramount interest in recent
years [1]. Originally proposed in the context of condensed
matter systems, this phenomenon deals with the localiza-
tion of the single-particle wave function in the presence of
uncorrelated (random) disorder known as the Anderson
localization (AL) [2]. Anderson localization predicts the
metal-insulator transition as a result of quantum inter-
ference of a scattered wave function in the presence of
impurities in the system. This interesting phenomenon
has been studied in disparate systems such as photonics
lattices and elastic media as well as in optical lattices
[3–10].
While the metal-insulator transition associated with the

AL is limited to higher-dimensional systems, similar
physics can be obtained in one dimension by replacing
the uncorrelated (random) disorder by a quasiperiodic
potential. The simplest example of such quasiperiodic
systems which are neither periodic nor completely disor-
dered is the self-dual Aubry-André (AA) model [11], which
exhibits the localization transition at a critical quasiperiodic
potential strength before (after) which all the states of the
system are extended (localized). However, in certain
generalized AA model and other quasiperiodic systems
[12–17], the transitions to the localized phases are often
associated with a critical region where both extended and
localized states coexist. The key feature of this critical
region is the existence of the single-particle mobility edge
(SPME) which corresponds to a critical energy separating
the extended and the localized states of the system [1,18].
Because of the recent progress in the field of quantum gases
in optical lattices, the localization transition and the
possible existence of the SPME in quasiperiodic systems

have gained considerable interest [19,20], leading to their
recent experimental observations [21–23].
So far, it has been well established that, after the system

undergoes a localization transition, all the states remain
localized forever with increasing disorder strength. In this
work, we show that this is indeed not always true. In a one-
dimensional dimerized lattice with staggered quasiperiodic
disorder, the competition between dimerization and quasi-
periodic disorder leads to a reentrant localization transition.
This means some of the already localized states become
extended again for a range of quasiperiodic potential. A
further increase in the disorder strength leads to the second
localization transition where all the states become localized
again. This reentrant localization transition is also asso-
ciated with separate critical regions hosting the SPMEs in
the spectrum.
Model and approach.—We consider a one-dimensional

dimerized lattice with on-site quasiperiodic disorder which
is given by the Hamiltonian:

H¼−t1
XN
i¼1

ðc†i;Bci;AþH:c:Þ− t2
XN−1

i¼1

ðc†iþ1;Aci;BþH:c:Þ

þ
XN
i¼1

λAni;Acos½2πβð2i−1Þ�þ
XN
i¼1

λBni;Bcos½2πβð2iÞ�:

ð1Þ

This is a chain of N unit cells consisting of two sublattice
sites A and B. i represents the unit cell index, and L ¼ 2N
is the length of the chain. c†i;Aðci;AÞ and c†i;Bðci;BÞ are the
creation (annihilation) operators corresponding to sites in
the A and B sublattices which we denote by (i, A) and (i, B),
and the site number operators are denoted as ni;A and ni;B.
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The intra- and intercell hopping strengths are represented
by t1 and t2, respectively, and H.c. stands for the Hermitian
conjugate. The strength of the on-site potential at the
sublattice site AðBÞ is represented by λA (λB), and β
determines the period of quasiperiodic potential. The
staggered disorder is introduced by assuming λA¼−λB¼ λ
in Eq. (1). The model Eq. (1) in the limit of vanishing dis-
order, i.e., λ ¼ 0, is the paradigmatic Su-Schrieffer-Heeger
model [24], which exhibits a trivial (when t1 > t2) to
topological (when t1 < t2) phase transition through a gap
closing point at t1 ¼ t2. This phase transition is protected
by the chiral symmetry of the system. Note that in the
presence of finite on-site disorder this symmetry is explic-
itly broken.
We choose β ¼ ð ffiffiffi

5
p

− 1Þ=2, a Diophantine number [25]
in our work, and fix the intracell hopping t1 ¼ 1 as the
energy scale. For convenience, we define a quantity
δ ¼ t2=t1 which controls the hopping dimerization in
Eq. (1). The system size considered in our simulations is
up to L ¼ 13530, that is, N ¼ 6765 unit cells. We explore
the effect of staggered disorder in both the limits of
dimerization in Eq. (1) such as δ < 1 and δ > 1. To analyze
the physics of the model shown in Eq. (1), we rely on the
inverse participation ratio (IPR) and the normalized par-
ticipation ratio (NPR) [20,26], which are the two most
significant diagnostic tools to characterize the localization
transition. For the nth eigenstate ϕi

n, the IPR and the NPR
are defined, respectively, as

IPRn ¼
XL
i¼1

jϕi
nj4; NPRn ¼

�
L
XL
i¼1

jϕi
nj4

�
−1
: ð2Þ

The extended (localized) phases are characterized by
IPR ¼ 0ð≠ 0Þ and NPR ≠ 0ð¼ 0Þ in the large L limit.
Before proceeding with the staggered λ case, we first
highlight the physics associated with the case of uniform
λ for comparison.
Uniform disorder (λA ¼ λB ¼ λ).—In the limit of δ ¼ 1,

Eq. (1) corresponds to the pure AA model which exhibits a
localization transition without any SPME. However, mov-
ing away from this limit, we show that the localization
transition occurs through a critical regime hosting the
SPME for both δ < 1 and δ > 1. To identify the localiza-
tion transitions, we plot the hIPRi and the hNPRi as a
function of λ for the two exemplary points, namely, δ ¼ 0.5
and δ ¼ 3 in Figs. 1(a) and 1(b), respectively. Here, hIPRi
and hNPRi denote the averages of the IPR and NPR,
respectively, computed by considering all the eigenstates
for a particular value of λ. It can be seen that, contrary to the
simple AA model (δ ¼ 1), the plots for the hIPRi and the
hNPRi do not sharply cross each other at the duality point
λ ¼ 2 [27] for both values of δ. Rather, they cross each
other at very different values of λ and also exhibit a
coexisting region where both the hIPRi and the hNPRi
are finite (shaded regions). This signifies the presence of

both the localized and the extended states for a range of λ
(0.7 < λ < 1.4 when δ ¼ 0.5 and 1.6 < λ < 3.4 when
δ ¼ 3) which are the critical phases exhibiting the
SPMEs. Clearly, after the localization transition, all the
states remain localized as a function of λ.
The localization transition and the existence of the

SPME can be easily inferred from the energy spectrum
and the associated IPR of the individual states. We plot the
IPR associated to the energy spectra E corresponding to the
Hamiltonian in Eq. (1) for δ ¼ 0.5 and 3 in the insets in
Figs. 1(a) and 1(b), respectively. Here, the eigenenergies
are color coded with the corresponding IPRs. Because of
the dimerized nature of the model [Eq. (1)], we get two
distinct energy bands at λ ¼ 0, and in this limit the
energy levels are completely extended for both the trivial
[Fig. 1(a)] and the topological [Fig. 1(b)] cases. As the
value of λ increases, the gaps between the bands in both the
dimerized limits tend to vanish beyond a critical λ. Clearly,
in both cases, the fully extended (red) and the localized
regions (blue) are separated by a critical phase where both
extended and localized states coexist for a range of values
of λ which host a SPME. Quite expectedly, the appearance
of the localized states at λ ¼ 0 in the inset in Fig. 1(b) is the
topological edge modes present in the middle of the gap.
We shall discuss the fate of these edge modes later. Note
that other minibands with some states in the gaps between
them appear in the energy spectrum due to the quasiperi-
odic disorder which are irrelevant for the present analysis.
Staggered disorder (λA ¼ −λB ¼ λ).—In this section, we

discuss the role of staggered disorder on the localization
transition. In this case also, one expects a qualitatively
similar localization transition as in the uniform disorder
case with some quantitative difference. This is confirmed in
our analysis, which shows the extended to localization
transition through a critical phase where both hIPRi and
hNPRi are finite for a range of values of δ. As is well known
and already mentioned before, in quasiperiodic lattices
exhibiting localization hosting the SPME, for the values of

FIG. 1. The hIPRi (red dashed curve) and hNPRi (blue solid
curve) are plotted as a function of λ for (a) δ ¼ 0.5 and (b) δ ¼ 3
for a system of size L ¼ 13530. The shaded regions indicate the
critical or the intermediate regimes. The color maps in the insets
show the plots of IPR associated to all eigenmodes E with respect
to λ for values of δ of the main figure.

PHYSICAL REVIEW LETTERS 126, 106803 (2021)

106803-2



λ prior to (beyond) the critical phase, all the states of the
system are extended (localized).
Once the system is in the localized phase, it remains

localized as a function of the strength of the quasiperiodic
potential λ. As a result, one gets hIPRi ≠ 0 and hNPRi ¼ 0
for all values of λ after the critical regime. However,
surprisingly in the presence of the staggered disorder,
we find that, for some intermediate values of δ, the system
undergoes two localization transitions through two critical
phases as a function of λ. This reentrant localization
behavior can be very well discerned by together analyzing
the hIPRi and hNPRi. In Figs. 2(a) and 2(b), we show the
hIPRi and hNPRi corresponding to two different values of
dimerization such as δ ¼ 1.5 and 2.2, respectively, for
L ¼ 13530. Clearly, for δ ¼ 1.5 [Fig. 2(a)], there is a
transition to the localized phase through a critical region for
the range of λ between 0.9 < λ < 2.5. After the localization
transition, i.e., for λ > 2.5, all the states are localized.
On the other hand, for δ ¼ 2.2 [Fig. 2(b)], there
exist two critical regions in the range 0.9 < λ < 1.8 and
2.1 < λ < 2.9 where both the hIPRi and hNPRi are finite.
In the region between the two critical phases and again
beyond the second critical phase, the system is fully
localized. This indicates that the system also hosts two
SPMEs as a function of λ. Note that the extent of the second
critical region occurs for a small range of λ. In order to rule
out any finite size effects, we perform finite size extrapo-
lation of the hIPRi [28] and hNPRi considering data for
different system sizes such as L ¼ 1974, 3194, 5168, 8362,
and 13530. The inset in Fig. 2(b) shows the hNPRi data for
various system sizes including the one at L → ∞ for
δ ¼ 2.2. This clearly indicates the stability of the second
critical region.
This reentrant localization feature can be seen in the

energy spectrum encoded with the corresponding IPR as
shown in Fig. 3(a). For clarity, we depict only the upper
band of the spectrum which shows a transition from
extended-critical-localized-critical-localized regions as a
function of λ. A clear picture can be obtained by plotting

the IPR of the individual eigenstates as shown in Fig. 3(b).
The deep red patches appearing in Figs. 3(a) and 3(b) for
2.1 < λ < 2.9 indicate that some of the localized states
become extended again for a range of λ. This confirms the
presence of the second critical region and the second
SPME. We further confirm the existence of the SPME
by analyzing the IPR and the NPR for the individual
eigenstates of the system in the critical regime. Figure 4(a)
shows the IPR and NPR for all the eigenmodes for δ ¼ 2.2
at λ ¼ 1.2 and 2.5 in the upper and lower panels, respec-
tively. The plots show a clear distinction between the
extended states (finite NPR) from the localized states (finite
IPR) of the spectrum. A similar signature is also seen in the

FIG. 2. (a) and (b) show the hIPRi and the hNPRi for δ ¼ 1.5
and 2.2, respectively, for the case of staggered disorder and
L ¼ 13530. The shaded regions represent the critical phases. The
inset shows the hNPRi for L ¼ 1974, 3194, 5168, 8362, 13530,
and ∞ (light to deep blue).

FIG. 3. (a) The upper half of the energy eigenvalue spectrum
superimposed with their respective IPR shows the extended,
critical, and localized states. (b) The IPR associated to the
eigenstate indices as a function λ for δ ¼ 2.2 for a system of
size L ¼ 3194.
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FIG. 4. (a) The IPR (red squares) and NPR (blue circles) of
different eigenstates for δ ¼ 2.2 and λ ¼ 1.2 (upper panel) and
λ ¼ 2.5 (lower panel). The states with finite IPR in the extended
regime are the emerging edge modes in the fractal gaps. (b) The
DOS for δ ¼ 2.2 and λ ¼ 1.2 (upper panel) and λ ¼ 2.5 (lower
panel). The vertical lines separate the extended and localized
regions. (c),(d) The edge states and the corresponding IPRs for
uniform and staggered disorder, respectively, for δ ¼ 1.5 (left
panel) and δ ¼ 5 (right panel). E− (blue dot-dashed line) and Eþ
(red dashed line) corresponding to the two edge states along with
their IPR, i.e., IPR− (blue solid line) and IPRþ (red dotted line).
For better visibility, the energies in the right panel of (c) are
plotted as E=4.
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density of states by analyzing it with the IPR of the
individual states indicating the existence of the mobility
edge as shown in Fig. 4(b) (see the figure caption for
detail).
Phase diagram.—Finally, we present the key results in

the form of a phase diagram as displayed in Fig. 5(b) for the
case of staggered disorder in the δ-λ plane. The phase
diagrams are obtained by computing a quantity η intro-
duced in Ref. [26] as

η ¼ log10½hIPRi × hNPRi�: ð3Þ

The presence of the critical region (blue region bounded by
the symbols) is clearly distinguished from the fully
extended or the fully localized regions (red regions) in
the phase diagram. Note that the critical regions are
separated by a narrow passage at δ ¼ 1 (AA model), where
a sharp localization transition occurs. It can be seen that for
a range of δ one encounters two critical regimes with an
increase in λ which is the key finding of our analysis.
However, this reentrant feature does not appear in the case
of uniform disorder [compare Fig. 5(a)]. We complement
the above findings by directly locating the boundaries
(filled squares) of the critical region by examining the
values of hIPRi and hNPRi in the thermodynamic limit.
This nontrivial feature of the reentrant localization tran-
sition and the SPME can be attributed to the competition
between the hopping dimerization and the staggered dis-
order that renders an extended nature to some of the low-
energy localized states. The detailed analysis above
requires further investigation.
It is worth mentioning that the reentrant localization

phenomena and the mobility edge occur in both the limits
of the dimerization [see Fig. 5(b)]. Hence, an important
conclusion that can be drawn at this point is that the
underlying topological properties has no role in establish-
ing the reentrant localization transition.
Edge modes.—Having analyzed the physics of the bulk

spectrum, we discuss the fate of the topological zero energy
edge modes as a function of the disorder strength. We note

that the initially localized zero modes (at λ ¼ 0) become
energetic and finally hybridize into the bulk bands with an
increase in λ for both uniform and staggered disorder cases
as already shown in Figs. 1(b) (inset) and 3(a), respectively.
To explicitly understand the behavior of these modes, we
separately plot the edge modes as a function of λ in Fig. 4
along with their IPR. We consider two different values of δ,
namely, δ ¼ 1.5 and δ ¼ 5, which represent, respectively,
weak and strong dimerization limits pertaining to the
topological regime. As mentioned earlier, owing to the
breaking of the chiral symmetry induced by the quasi-
periodic potential, both the edge modes, namely, the
particle mode (Eþ shown by a dashed red line) and the
hole mode (E− shown by a dot-dashed blue line) asym-
metrically separate out from each other toward the opposite
bands as λ increases [Fig. 4(c)] for the case of uniform
potential. However, in the case of the staggered disorder,
both the edge modes move differently toward the lower
band [Fig. 4(d)] [29]. Eventually, for all the cases, beyond
certain critical values of λ, Eþ and E− tend to merge with
each other. We also plot the corresponding IPR for both the
modes as IPRþ (dotted red line) and IPR− (solid blue line).
It can be seen that in all four cases the IPR initially
decreases and then increases as a function of λ. In the case
of weak dimerization, initially the states are localized. As
the value of λ increases, the states become delocalized first
and then become strongly localized. On the other hand, in
the case of strong dimerization, the states which are
strongly localized (IPR ∼ 1) at the beginning (for small
λ) remain localized forever. This analysis indicates that the
behavior of the edge states as a function of λ is independent
of the bulk behavior.
Conclusions.—We have studied the localization transi-

tion in a dimerized lattice with staggered quasiperiodic
disorder. We show that the system undergoes a reentrant
localization transition as a function of the disorder strength
for a range of values of dimerization. The reentrant
localization occurs in both the regimes of dimerization,
and each localization transition is associated with the
SPME. We confirm this finding by examining the partici-
pation ratios, the single-particle spectrum, and the behavior
of the individual eigenstates and present a phase diagram
depicting all the above findings. For completeness, we also
analyze the phase diagram in the case of uniform disorder
which shows the usual localization transition and the
SPME. In the end, we discuss the fate of the zero energy
edge modes as a function of disorder strength which were
initially localized in the absence of any disorder due to the
topological nature of the model.
The reentrant feature may reveal interesting physics in

transport and dynamical properties of quantum particles.
An immediate extension could be to study the stability of
this reentrant phenomenon in the context of many-body
localization. Because of the phenomenal experimental
progress in systems of ultracold atoms in optical lattices

FIG. 5. The phase diagrams in δ and λ plane for (a) uniform
disorder and (b) staggered disorder cases. The filled black squares
are the data points obtained by examining the hIPRi and hNPRi
plots. (See the text for details). The color code indicates the values
of η.
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to simulate dimerized latticed [30,31], quasiperiodic
systems [21,23] and the recent experiment on a disorder-
induced topological phase transition using 171Yb [32], our
findings can, in principle, be simulated in the state-of-the-
art quantum gas experiments.
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Note added.—Recently, we became aware of an interesting
recent work related to localization transition in an inter-
polating Aubry-André-Fibonacci model [33]. The model is
shown to exhibit a cascade of band selective localization
and delocalization transitions while transiting from the AA
into a Fibonacci model.
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