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We study thermodynamic properties of the doped Hubbard model on the square lattice in the regime of
strong charge and spin fluctuations at low temperatures near the metal-to-insulator crossover and obtain
results with controlled accuracy using the diagrammatic Monte Carlo method directly in the thermo-
dynamic limit. The behavior of the entropy reveals a non-Fermi-liquid state at sufficiently high interactions
near half filling: A maximum in the entropy at nonzero doping develops as the coupling strength is
increased, along with an inflection point, evidencing a metal to non-Fermi-liquid crossover. The specific
heat exhibits additional distinctive features of a non-Fermi-liquid state. Measurements of the entropy can,
therefore, be used as a probe of the state of the system in quantum simulation experiments with ultracold
atoms in optical lattices.
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The 2DHubbard model [1] is one of the foremost models
of strongly interacting electrons, whose Hamiltonian is
written as

H ¼ −t
X

hijiσ
ðĉ†iσ ĉjσ þ H:c:Þ þ U

X

i

n̂i↑n̂i↓ − μ
X

iσ

n̂iσ: ð1Þ

Here, t is the nearest-neighbor hopping amplitude, U is the
on-site Coulomb interaction, μ is the chemical potential, ĉ†iσ
(ĉiσ) creates (annihilates) a fermion with the spin σ on the
site i, and n̂iσ ¼ ĉ†iσ ĉiσ. In spite of its seeming simplicity, it
is widely believed that the Hubbard model captures the rich
phenomenology of cuprate high-Tc superconductors [2,3].
Nonetheless, after decades of extensive studies, much of
the intriguing physics harbored by the Hubbard model
remains to be uncovered and definitively described [4].
Among different properties of a thermodynamic system,

the entropy has a special place, capturing the temperature
dependence of several local thermodynamic observables
via Maxwell relations. It is also where quantum many-body
physics meets information theory [5–9]. In previous
studies, the entropy and some of the equations of state
of the 2D Hubbard model have been computed by various
state-of-the-art numerical algorithms, such as the determi-
nant quantum Monte Carlo (DQMC) [10–13], dynamical
cluster approximation (DCA) [14,15], numerical linked
cluster expansion [16,17], variational cluster approxima-
tion (VCA) [18], and finite-temperature Lanczos method
(FTLM) [19]. These results have substantially advanced
our understanding of thermodynamics of the 2D Hubbard
model, having led to a quantitatively reliable picture at high
temperatures.

A particular challenge has been the problem of how
the metallic character in the 2D Hubbard model at low
temperatures is destroyed by developing correlations
[20–25]. It is central to understanding the role and nature
of correlations that can potentially drive high-temperature
superconductivity at appropriate doping [2,3,20]. It has
been recently demonstrated [23,24] that the insulating
behavior at half filling (the average number of particles
per lattice site n ¼ 1) emerges smoothly as U is increased
starting from a metallic state due to extending antiferro-
magnetic (AFM) correlations, while the charge correlation
function reveals a correlation hole [24]. Such a crossover is
extended in parameter space, involving a transitional non-
Fermi-liquid (NFL) state with a partially gapped Fermi
surface [23]. This picture has proven difficult to capture
even qualitatively with finite-size methods due to the long-
range nature of correlations despite the absence of the
fermionic sign problem at half filling [21,23–25].
On the other hand, experiments with ultracold atoms

in optical lattices [26–33] accurately realize the model (1)
in a physical system and offer a route toward exploring
its properties over regimes not accessible to theoretical
methods. Recent experiments have approached the range of
temperatures T ≲ 0.25t of the metal-to-insulator crossover:
They demonstrate development of long-range AFM corre-
lations at T ∼ 0.2t [31] and their disappearance with
doping, while in situ measurements of the equation of
state nðμ; TÞ [6,7] enable accurate determination of the
entropy. However, reliable theoretical predictions for
thermodynamics of the doped 2D Hubbard model in this
regime are missing. Not only are controlled predictions
crucial for validation of upcoming experiments, but also
experimental determination of equations of state and,
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ultimately, the phase diagram of the model (1), requires
reliable thermometry, which in these isolated systems is
enabled only by theoretical input.
Here we study the entropy and thermodynamics of the

doped Hubbard model on the square lattice in the highly
nontrivial correlated regime where the system experiences a
crossover frommetallic Fermi-liquid (FL) to NFL behavior in
the presence of competing energy scales and strong corre-
lations. We obtain results with controlled accuracy directly in
the thermodynamic limit (TDL) by the diagrammatic
Monte Carlo approach, in which the coefficients of the
perturbative expansion for a particular observable in powers
of the coupling U are computed by a numerically exact
stochastic sampling of all contributing Feynman diagrams
[34,35]. More specifically, we use the connected determinant
(CDet) diagrammatic Monte Carlo algorithm [36] and the
approach of Ref. [37] for controlled evaluation of observables
from their diagrammatic series in the strongly correlated
regime, previously employed in Refs. [23,24]. The behavior
of entropy as a function of the doping and interaction strength
contains ample information about the state of the system,
allowing one, in particular, to pinpoint the FL-NFL crossover
in the charge sector by its relation to double occupancy and
compressibility. At the same time, the specific heat shows
signatures of the crossover in the AFM channel and
suppression of the density of states in the partially gapped
NFL at half filling. Our results suggest that the most basic
techniques of cold atom experiments, such as adiabatic
loading of a Fermi gas with known entropy in the optical
lattice [38] and determination of entropy from the equation of
state [6,7], can be used for detecting the state of the system in
this regime, while our data for the temperature dependence of
entropy and nðμ; TÞ provide a basis for reliable thermometry.
The maximum of entropy at a particular doping in the
correlated regime can indicate the vicinity of phase separation
[15,39–43] or favor high-temperature superconductivity, as
observed in cuprates [44–46].

We obtain the entropy of the system using the formula

s ¼ 1

T
ðEK þ UD − μnþ PÞ; ð2Þ

where EK is the kinetic energy, D is the double occupancy,
P is the negative grand potential density, equal to the
pressure for a homogeneous system, and all extensive
quantities are defined per lattice site. Having computed
the series coefficients for EK,D, n, and P, we evaluate these
observables using the procedure developed in Ref. [37] (for
more details of the method and its limitations, see
Supplemental Material [47]) and compute the entropy with
Eq. (2) directly in the TDL without numerical integration or
a fitting procedure.
Figure 1(a) shows the entropy as a function of chemical

potential (shifted by the half-filling value U=2) for a fixed
temperature T ¼ 0.2t (results at T ¼ 0.3t are also presented
in Supplemental Material [47]), which is within the range
T ≲ 0.25t, where quasiparticle properties can be defined
near half filling [23] (and, thus, one can speak of FL and
NFL states). This temperature has also become accessible
in state-of-the-art experiments. At half filling, sðμ ¼ U=2Þ
for U ¼ 4t is in perfect agreement with the extrapolated to
the TDL DCA result [14]. The key observation is that sðμÞ
changes its shape qualitatively as U is increased [16,19],
which can be understood in the following way. Because of
the particle-hole symmetry of the Hamiltonian, i.e., the
symmetry in Fig. 1(a) with respect to reflection about the
μ ¼ U=2 axis, and the requirement that sðμÞ is smooth,
∂s=∂μ ¼ 0 at μ ¼ U=2. (By the Maxwell relation
∂s=∂μ ¼ ∂n=∂T, it translates to the well-known fact that
n ¼ 1 at μ ¼ U=2 at any temperature.) Thus, the drift of the
maximum of sðμÞ away from half filling at U values above
a certain threshold Uch must be marked by the appearance
of an inflection point at μchðUÞ close to half filling,
defined by ∂2sðμchÞ=∂μ2 ¼ 0. By the Maxwell relation

FIG. 1. (a) Entropy as a function of the chemical potential for different U at T ¼ 0.2t (for U ¼ 4t, the gray shading marks the regime
where ∂D=∂T > 0, which contains the region marked by the green shading where the state of the system is of a NFL character,
∂κ=∂T > 0; the dark gray bar represents the location of the crossover μch with its error bar, the yellow bar being its counterpart for the
FTLM data on a 4 × 4 lattice of Ref. [19]); extrapolated to the TDL DCA result [14] at U ¼ 4t verifies our calculation at half filling.
(b) Entropy as a function of the temperature for various densities at the fixed interaction strengthU ¼ 4t. (c) Color map of the entropy in
the n − U plane for T ¼ 0.2t, where the black points pinpoint the location of the crossover from the metallic to NFL regime, nðμch; UÞ,
and the white points mark the entropy maximum.

PHYSICAL REVIEW LETTERS 126, 105701 (2021)

105701-2



∂2s=∂μ2 ¼ ∂κ=∂T, where κ ¼ ∂n=∂μ is the compressibil-
ity, this inflection point first appears when ∂κ=∂T at half
filling changes sign, signaling the crossover from metallic
to insulating behavior: A half filled metal is characterized
by ∂κ=∂T < 0, while an insulator features ∂κ=∂T > 0 [24].
At T ¼ 0.2t, this crossover was found in Ref. [24] to
happen at Uch ≈ 2.5t, which shows in Fig. 1(a) by the
maximum moving away from μ ¼ U=2 between the curves
for U ¼ 2t and U ¼ 3t. As U is increased further above
Uch, the inflection point at μchðUÞ moves away from half
filling, implying that the state of the system is of a NFL
character in the growing range of dopings such that
μ > μchðUÞ. The NFL regime for U ¼ 4t is marked in
Fig. 1(a) by the green shading and the location of the
crossover by the black points in Fig. 1(c).
The presence of the entropy maximum at μmax away from

half filling can be detected via ∂s=∂μ ¼ ∂n=∂T ¼ 0 in the
equation of state nðμ; TÞ for a given interaction strength.
The nðμÞ curves for close enough temperatures must cross
at the location of the maximum of sðμÞ, as seen for U ¼ 4t
in Fig. 2. Figure 1(c) combines the raw data points of sðμÞ
in Fig. 1(a) with the equation of state (Fig. 2) and shows the
entropy map in the n-U plane for a fixed temperature
T ¼ 0.2t. Along the trajectory μmaxðUÞ, the entropy mono-
tonically increases as a function of U.
Figure 1(a) compares the TDL sðμÞ with the numerically

exact FTLM data for a 4 × 4 lattice [19] at U ¼ 4t [54].
There is good agreement within error bars at μ≲ μmax, but,
inside the NFL regime, the finite-size data drop signifi-
cantly below the TDL curve with the discrepancy reaching
∼25%. The underestimation of entropy could be attributed
to fluctuations beyond a few lattice sites, likely due to
paramagnons, as found at half filling [23,24]. Thus, spatial
correlations remain important throughout the NFL regime,
which appears in a significantly reduced range of doping on
the 4 × 4 lattice. Interestingly, the density n� ≈ 0.88 of the
entropy maximum at U ¼ 4t shows no significant change
from the finite-size system at U ¼ 4t [19], or U ¼ 6t [15],
and is already close to that reported for the t-J model

(≈0.85) [55]. Finally, Fig. 1(b), where sðTÞ is plotted at
several densities, can be used for thermometry in experi-
ments where a weakly interacting gas of known entropy is
loaded in the optical lattice adiabatically [38].
At a certain μpotðUÞ, the sðμÞ curves corresponding

to different U values cross. By the Maxwell relation
∂s=∂U ¼ −∂D=∂T, at this point the temperature
dependence of the potential energy EP ¼ UD changes
sign: ∂D=∂T > 0 in the vicinity of half filling for
μ > μpotðUÞ, meaning that, in this regime, double occu-
pancy drops with cooling. At the same time, since ∂n=∂T is
negative for μ > μmax, this ensures the development of the
local magnetic moment hs2zi ¼ n=4 −D=2 upon cooling
toward the quasiantiferromagnet. Curiously, at half filling
and fixed T, development of the local moment [18] was
found in Ref. [24] to start at a larger value ofU than theUch
needed for the compressibility to acquire its insulating
character. This was attributed to the substantial enhance-
ment of ∂κ=∂T due to the temperature dependence of
nonlocal charge fluctuations. The behavior of entropy in
Fig. 1(a) shows that, with growing interactions, μpotðUÞ
decreases faster than μchðUÞ from U=2, eventually passing
it (marginally, given the error bars), so that at U ¼ 4t the
range of dopings for which ∂D=∂T > 0 is somewhat wider
than the NFL region defined by μ > μch. In Fig. 1(a) at
U ¼ 4t, the region where the double occupancy decreases
with cooling, ∂D=∂T > 0, is denoted by the gray shading,
which also contains the NFL regime.
In Ref. [56], magnetic phase separation—with a critical

point at T ≈ 0.23t, n ≈ 0.88—was predicted using a mean-
field theory with transverse magnetic fluctuations. Figure 2
shows no sign of the divergent derivative of nðμÞ character-
istic of the transition [15], ruling out phase separation for
T ≥ 0.2t. However, the entropy maximum and the rising
derivative in nðμÞ at μmax are consistent with phase
separation near μmax at considerably lower temperatures.
Figure 3 shows the behavior of the kinetic EK and

potential EP energies as a function of the density for various
temperatures at U ¼ 4t. While at high temperatures EKðnÞ
monotonically decreases on approach to half filling, a

FIG. 2. Density as a function of the chemical potential at
different temperatures for U ¼ 4t. The inset shows the density as
a function of μ − U=2 for various U at T ¼ 0.2t.

FIG. 3. The kinetic (solid lines) and potential energy densities
(dashed lines) plotted against density for various temperature at
fixed U ¼ 4t.
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minimum appears at T ≲ 0.5t, which propagates from half
filling to lower densities upon cooling. The rise of EKðnÞ on
approach to n ¼ 1 is a signature of increasing localization
in the NFL regime. In contrast, EPðnÞ is a monotonically
increasing function for all T. However, the curves for
neighboring temperatures cross at the point where
∂D=∂T ¼ 0 (¼ −∂s=∂U), corresponding to the location
of the boundary of the gray region in Fig. 1(a).
Numerical differentiation of the total energy E allows us

to obtain the specific heat CV , which exhibits several
signatures of the rich metal-to-NFL crossover physics.
Figure 4 shows CVðTÞ for different densities at U ¼ 3t.
At half filling, CVðTÞ develops a sharp upturn, which we
anticipate based on the data at other parameters [10,11,18]
to have a maximum at T ≲ 0.15t (we are not able to reliably
evaluate CV at temperatures lower than T ¼ 0.15t at
n ¼ 1). Such a maximum is generically due to extending
AFM correlations and is also seen, e.g., at the Néel
transition in three dimensions [57]. In two dimensions
(where a phase transition at n ¼ 1, T > 0 is forbidden), it
can be viewed as a marker for the crossover to the quasi-
AFM state with a large correlation length of more than ten
lattice sites, which is predicted in Ref. [24] to happen at
T ∼ 0.15t for U ¼ 3t, in consistency with our results.
Earlier finite-size DQMC and VCA results at half filling
appear to capture the location of the peak and a broad
maximum at high temperatures [10,11,18]. It is interesting,

however, that CVðTÞ at half filling also exhibits a small
shoulder at T ≈ 0.25t, where according to Ref. [23] the
single-particle gap first opens at the antinodal point of the
Brillouin zone. The accelerated decrease of CVðTÞ at
temperatures immediately below T ¼ 0.25t is consistent
with the picture of the gap proliferating along the Fermi
surface before the AFM correlations become appreciable at
T ≈ 0.2t and CVðTÞ starts rising sharply.
As the system is doped, the AFM peak is dramatically

suppressed already at n ∼ 0.935 and completely disappears
at n≲ 0.86 down to the lowest accessible temperatures.
At large dopings, the CVðTÞ curve becomes essentially
featureless, suggesting that it approaches its low-
temperature CVðTÞ ∝ T FL asymptote. However, at the
specific density n ¼ 0.7, which is well below the location
of the entropy peak and at which the system is expected to
be a good FL at low enough T, we detect a sizable bump in
CVðTÞ at T ≈ 0.2t, which appears to be robust with respect
to various numerical differentiation schemes.
Splitting the specific heat into the kinetic [∂EK=∂T,

Fig. 4(b)] and potential [∂EP=∂T, Fig. 4(c)] energy con-
tributions [11] sheds light on the origin of the features of
CVðTÞ: The low-temperature upturn close to half filling is
entirely due to the potential energy, which is consistent with
the metal-to-insulator crossover being driven by Slater
physics [58], whereas the increase of CV at higher tempera-
tures is due to EK . As the system is doped, the AFM peak in
EP gradually disappears around densities where the entropy
is maximal. Further doping extends the range of tempera-
tures where ∂EP=∂T < 0, in consistency with the increas-
ing entropy with U, seen in the large doping regime in
Fig. 1(a).
In conclusion, we have demonstrated by controlled

calculations in the TDL that entropy and specific heat
contain ample information to characterize the state of the
doped 2D Hubbard model, with respect to both its charge
and spin properties, and observe the crossover from
metallic to NFL behavior at low enough temperatures
where quasiparticles become meaningful. This regime is
already within reach of current experiments with ultracold
atoms in optical lattices.
The maximum in sðnÞ that appears at a nonzero doping is

entirely due to correlations, and its emergence necessarily
requires a NFL regime developing in the vicinity of
half filling. A sharp maximum of entropy is expected,
e.g., above the critical end point of the phase separation
line, which was suggested to emerge at a lower T in
this regime of parameters [15,39–43]. By the condition
∂2s=∂μ2 ¼ ∂κ=∂T, it could stem from the divergence of κ
on approach to the critical point. On the other hand, an
entropy maximum corresponds to a high density of many-
body states available for scattering, while thermodynamic
observables become NFL-like only closer to half filling
than the location of the maximum. Thus, the entropy
maximum could favor a Fermi surface instability, such

FIG. 4. (a) The specific heat as a function of the temperature for
different densities at U ¼ 3t, the inset enlarging a small shoulder
at n ¼ 1. (b) The kinetic and (c) the potential energy contribution
to the specific heat as functions of the temperature.
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as Cooper pairing, which could occur at a relatively high
temperature in its vicinity. In fact, the maximum of the
electronic entropy has been observed to correlate with the
highest superconducting Tc in cuprates [44–46].
Here we focused on the interaction range U ≲ 4t, to

which the metal-to-insulator crossover is confined at half
filling: At larger couplings, cooling the system brings it
directly in the insulating regime [23]. In this range of U,
correlations are also strongly nonlocal, making the formu-
lation in the TDL a major advantage of our method.
Although our technique is unable to produce reliable results
at larger U, it is seen from Fig. 1(a) that the entropy
maximum drifts toward larger dopings and keeps rising
with increasing U at these temperatures. From the behavior
of magnetic correlations with doping [59], we expect that
this trend continues until about U ∼ 6t, where the entropy
likely reaches its absolute maximum. At U ≳ 6t, the
competition of superconducting and magnetic (stripe)
phases in the ground state for n≳ 0.8 has been recently
studied using advanced tensor network and quantum
Monte Carlo methods [60–62], where it was found that
the stripes wipe out superconductivity. Our data rule out
magnetic phase separation [56] at T ≥ 0.2t but are con-
sistent with its existence at lower or even zero temperature
[15], where magnetic fluctuations in the vicinity of the
critical point could drive high-Tc superconductivity, the
regime of 4≲ U=t≲ 6, n ∼ 0.88, being the best candidate
for this scenario.
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