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Generating high-quality laser-plasma accelerated electron beams requires carefully balancing a plethora
of physical effects and is therefore challenging—both conceptually and in experiments. Here, we use
Bayesian optimization of key laser and plasma parameters to flatten the longitudinal phase space of an
ionization-injected electron bunch via optimal beam loading. We first study the concept with particle-in-
cell simulations and then demonstrate it in experiments. Starting from an arbitrary set point, the plasma
accelerator autonomously tunes the beam energy spread to the subpercent level at 254 MeV and
4.7 pC=MeV spectral density. Finally, we study a robust regime, which improves the stability of the laser-
plasma accelerator and delivers sub-five-percent rms energy spread beams for 90% of all shots.
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In a laser-plasma accelerator (LPA) [1,2], an intense laser
pulse excites a trailing plasma wave that can trap and
accelerate electrons from the plasma background. The
plasma wave supports accelerating fields that surpass those
of modern radio-frequency based machines by orders of
magnitude, which has led to the demonstration of few-
femtosecond [3,4], GeV-level electron beams over only cm
distances [5,6].
Despite rapid progress of the field, however, providing

the high-quality electron beams demanded by applications
[7–9] is still a major challenge. Generating high-brightness
laser-plasma electron beams requires carefully balancing a
multitude of physical effects that nonlinearly couple laser
and plasma parameters. Furthermore, probing the mecha-
nisms of a laser-plasma accelerator is typically associated
with high cost. Particle-in-cell (PIC) [10] simulations, that
adequately cover the physics involved, require high tem-
poral and spatial resolution, and are computationally very
expensive. Optimizing LPAs in experiments is further
complicated by the limited repetition rates and stability
of today’s drive lasers that typically constrain the available
knowledge of the system to a few noisy measurements.

Bayesian optimization (BO) is a method designed to find
optima of a costly to evaluate black-box function f based
on limited and noisy measurements [11] and therefore
seems well suited to optimize the complex parameter space
of particle accelerators. Only recently, this approach was
successfully applied to maximize the pulse energy of the
Linac coherent light source (LCLS) x-ray free-electron
laser [12].
In this Letter, we experimentally demonstrate the use

of Bayesian optimization to improve the beam quality
and stability of a laser-plasma accelerator. Based on
particle-in-cell simulations, we first demonstrate the
method’s capability to autonomously optimize the shape
of the beam’s longitudinal phase space by controlling only
a few experimentally accessible laser and plasma param-
eters. We then use the same algorithm to tune those
parameters in the experiment and, starting from noise,
optimize the accelerator to deliver subpercent energy
spread beams at 254 MeV and few-10 pC bunch charge.
By slightly adapting the BO algorithm, we find a regime
which drastically improves the stability of these beams.
Bayesian optimization is an optimization strategy that is

relevant for problems where an objective function f, i.e.,
the quantity that one wants to improve, is expensive to
probe or, as in most cases, takes a long time to evaluate. The
idea of BO is to make use of a surrogate model, i.e., a
mathematical model that approximates the real objective
function and is much faster and/or cheaper to evaluate.
Oftentimes, the surrogate model is generated through
Gaussian process regression [13], a machine learning
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technique which returns a probability distribution of
possible functions compatible with previous evaluations.
Thus, the model can not only predict the most probable
value of f at an unexplored location but it also provides an
uncertainty for this prediction. Since the goal is to maxi-
mize the objective function with as few direct evaluations
as possible, BO uses the surrogate model to determine the
most promising points to evaluate. To do so, the model
predictions and their uncertainties are combined into an
acquisition function which describes the strategy to deter-
mine the next parameters to sample. One of the most
commonly used acquisition functions is expected improve-
ment [11], i.e., the expected value of the improvement of a
new measurement over the current best sample. The
parameters which maximize the acquisition function are
selected as the input for the next direct evaluation. Other
choices of acquisition functions include upper confidence
bound [14], knowledge gradient [15], and entropy search
[16]. After the evaluation, the model is refined with the
newly gathered information. This process is repeated
iteratively to find the input parameters that maximize the
objective function.
Here, we apply Bayesian optimization to a laser-plasma

accelerator, which uses localized ionization injection in
combination with optimal beam loading to generate high-
quality electron beams [17]. To separate the injection from
the acceleration of the electron bunch, we use a plasma
profile as shown in Figs. 1(d)–1(f). In a short region of
nitrogen-doped hydrogen, inner shell electrons are first
injected via ionization injection [18–20] and then sub-
sequently accelerated in a plasma density plateau (n0)
formed from pure hydrogen. The final electron energy

spread is determined by the initially injected phase space,
the accumulation of correlated energy spread induced by
the strong accelerating gradient, and an effect known as
beam loading [21–25], which is driven by the current
profile of the injected bunch and modifies the longitudinal
accelerating field. When balancing those effects, the
combined wakefield and beam loading field effectively
result in a constant accelerating field over the entire bunch
length [17]. In turn, every variation of the system that has
an effect on the bunch charge, current profile, or the
amplitude of the wakefield, will directly influence the
energy spread of the accelerated electron bunch.
The influence of the dominant parameters deviating from

the optimum setting can be summarized as follows. Higher
laser energies drive a stronger wakefield, but also increase
the injected charge due to higher intensity in the N2-doped
region, which overloads the wakefield and results in a
positively chirped bunch. The focus position determines the
laser intensity in the injection region and thus the bunch
charge. Shifting the focus toward the end of the plasma can
therefore compensate higher laser energies and overloading
the wake. The charge of the beam can also be controlled by
the N2 concentration as it determines the density of
electrons available for injection. However, since the outer
shells of nitrogen release five electrons to the plasma
background, the N2 concentration also scales the plasma
density peak at the beginning of the target and the negative
density gradient between doped and pure hydrogen. The
change of the plasma wavelength in this transition roughly
determines the length of the injected bunch. Finally, the
plasma density in the plateau sets the plasma wavelength
and wakefield amplitude, which limits the bunch length and
its final energy. Although the main influence of each of
these parameters is conceptually known, their complex
interplay, as well as dynamic effects like the evolution of
the drive laser and the wake make it difficult to study the
system beyond such simple considerations. Particle-in-cell
simulations that capture the full physics are required.
In the following, we combine the Bayesian approach

with the spectral, quasicylindrical PIC code FBPIC [26,27]
to identify the optimum working point in the complex
parameter space that generates high-quality electron beams.
To optimize the spectral density of the electron bunch,

we maximized the objective function f ¼ ffiffiffiffi

Q
p

Ẽ=ΔE. Here,
Ẽ is the median energy and ΔE is the median absolute
deviation (mad) of the energy, which was found to be the
most robust measure for the beam energy spread. Reducing
the energy spread at the same time as maximizing the beam
charge is for example of interest to drive a future free-
electron-laser [7] which puts limitations on the allowed
spectral width of the electron beam while the radiation
output scales strongly with the beam charge and current.
The objective function uses a scaled bunch charge,

ffiffiffiffi

Q
p

, so
as to promote beams with smaller energy spread over
higher charge beams. We varied parameters that are easily

FIG. 1. Optimization PIC simulations of localized ionization
injection: longitudinal electron phase spaces (a)–(c) and corre-
sponding setups (d)–(f) with tunable nitrogen-hydrogen mixture
(purple) and pure hydrogen (blue) region, plasma density (gray)
and variable laser energy and focus position (red line). (g) The
objective function,

ffiffiffiffi

Q
p

Ẽ=ΔE, a measure for the spectral density,
improves during the optimization.
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accessible in the experiment: the N2 concentration, the
overall gas (plasma) density, the laser energy and focus
position.
Figures 1(a)–1(c) show the electron phase spaces after

exiting the plasma for selected steps of the optimization
which was seeded by running five simulations with random
input parameters. Initially, panels (a),(d), the electron phase
space has a positively correlated energy spread which is a
sign that the wakefield is overloaded. This happens because
the laser diffracts so that in the second half of the profile the
wakefield is too weak to support the charge of the beam.
The optimization algorithm compensates this by shifting
the laser focus toward the end of the density profile and by
increasing the laser energy, panels (b),(e). The wakefield is
now strong enough to support the full charge throughout
the entire plasma so that the phase space of the beam
flattens. By further shifting the focus downstream and
reducing the laser energy, panels (c),(f), the intensity in the
injection region is decreased. This constrains the injection
process and therefore the initial energy spread of the beam
so that its slice energy spread is reduced. Additionally, an
increase of the N2 concentration increases the charge of the
beam and its length due to the plasma density ramp that is
now at the transition between the mixed and pure gas
region. Because the front of the electron beam is now closer
to the drive laser it experiences a weaker accelerating field
and consequently its energy is lower. Finally, the optimized
beam has a charge of 52 pC and an energy of 258 MeVwith
an energy spread of 0.7% (mad). This value is close to the
slice energy spread of 0.4% at the center of the beam and
limited only by the bunch tail, which contains ∼10% of the
charge. The normalized transverse beam emittances are 1.5
and 0.3 mm mrad in x and y, respectively, where x is the
laser polarization plane (the evolution of the transverse
beam properties is shown in [28]).
After confirming that low energy spread beams are

theoretically possible in a carefully optimized setup, we
realized this scenario in an experiment using the LUX

plasma accelerator [32,33].
Figure 2 shows the experimental setup. The Ti:sapphire

drive laser ANGUS delivered pulses with up to 2.6 J
(∼1% rms stability) energy and 39 fs FWHM
(∼2.5% rms stability) pulse length that were focused by
a 2 m focal length off-axis parabola to a FWHM spot size of
25 μm with 1 Hz repetition rate. The laser energy was
controlled with an attenuator consisting of a thin-film
polarizer in combination with a motorized wave plate.
The pulse energy was measured with a pyroelectric sensor
using the leakage through a transport mirror. The focus
position of the laser was fine-tuned by shifting the
motorized lens of a beam expander behind the last amplifier
stage so that the beam reached the focusing parabola with
slight initial defocus. The defocus was measured with a
wave front sensor behind the parabola to infer the focus
position. To compensate drifts of the system, the attenuator

and the lens were controlled and stabilized in closed loop
with the energy and wave front measurements.
The target consisted of a microstructured sapphire plate

[17]. A 5-mm long square channel (500 μm edge length)
was continuously filled from two inlets of which the first
was supplied with a mixture of N2 and H2 and the second
with pure H2. The N2 concentration and gas pressure were
controlled via three independent mass-flow controllers.
These five parameters resembled the same degrees of
freedom that we used in the simulations presented above.
In addition, they provided control over the differential
pressure between the front and the back of the target, which
determines the transition between the mixed and pure gas
regions. After the target an electromagnetic quadrupole
doublet captured the accelerated beams and focused them
onto the scintillating screen of an electromagnet dipole
spectrometer. At the imaged energy, the spectrometer had a
resolution of 0.1%. In a range of �20 MeV around
the focused energy, the resolution was better than 1%.
The beam charge was measured with a cavity-based dark-
current monitor.
Again, we used f ¼ ffiffiffiffi

Q
p

Ẽ=ΔE as a measure for the
spectral density. Using the online measured laser energy
and defocus, the actual machine inputs were mapped to a
measured objective function. Thereby, the surrogate model
could attribute fluctuations of the objective function to
variations of the recorded laser parameters and the model
could be trained with consistent single shot data. To
account for remaining noise, caused by measurement errors
and variations of hidden laser parameters, we extended the
surrogate model with a white noise kernel.
We set the quadrupole doublet to image 270 MeV

electron beams onto the spectrometer. Beams with an
energy far off this set point were ignored by the optimi-
zation, due to the reduced energy resolution of the
spectrometer and the apparently larger energy spread.
To start the optimization, we acquired data at ten random

input settings. For each iteration, the optimization gathered
six shots and fed these individually to the surrogate model,

FIG. 2. Setup of the LUX accelerator. The laser energy and focus
position in the plasma source with variable gas flows are controlled
with a movable lens and an attenuator. Circular inset: plasma
density (blue and green) and the laser envelope from a particle-in-
cell simulation. The laser drives a spherical plasma cavity in the
back of which an electron beam is injected and accelerated.
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maximized the acquisition function on the updated model,
and then determined a new set point. Changes to the gas
system took a few seconds to have an effect. Therefore, the
machine was not tuned after every shot but by measuring
six shots at each machine setting the jitter of the laser
parameters could be used to locally explore the objective
function. Figure 3 shows the evolution of the system during
the optimization process. The initial beam, panel (a), has a
spectrum with a small peak and a pedestal toward higher
energies, which indicates that the beam still has a correlated
energy spread from un-matched beam loading. After a few
iterations, panel (b), a well-defined peaked spectrum is
measured. Slight adjustments increase the energy of the
beams to ∼260 MeV, panel (c). The decrease of the relative
energy spread that comes at the cost of beam charge results
in the improvement of the objective function. By balancing
the relevant laser and plasma parameters the algorithm was
able to find a setting with subpercent energy spread starting
from initially random conditions after a runtime of 45 min.
The fluctuations of the objective function around (c) can be
attributed to jitters of the laser parameters [17].
To characterize the accelerator performance at this set

point, we adopted the focusing to image a beam energy of
250 MeV for best spectral resolution. Figure 4 shows the
average spectrum of the 100 best of 2500 recorded events,
which we consider representative for operation at the
optimized settings. On average, these beams had 31 pC
and an energy of 254 MeV with 0.88% rms (0.68% mad)
energy spread.
By building the surrogate model on the basis of all

individual events, the algorithm aimed at settings where the

best possible beam could be generated, regardless of how
frequently these would occur. The drive laser parameters, in
particular the laser energy and focus position, still vary
slightly from shot to shot and were the main source of
electron beams deviating from the optimum. By including
the actual measurements of those parameters, the model
could interpret fluctuations of the objective function to a
large degree. However, variations of other hidden laser
parameters, that could not be recorded online, still were
substantial and reduced the precision of the model.
To improve the stability of the plasma accelerator, we

modified the optimization algorithm: instead of feeding the
surrogate model with individual shots, we collected 20
shots at each setting. We then determined the most frequent
objective value [28] to train the model together with the
averaged input parameters. Thereby, the algorithm favored
settings, where the majority of the beams had a high
quality, and thus balanced beam quality and stability.
Figure 5 shows a comparison between a reference

machine setting and a setting obtained with this modified
approach. The reference setting is manually tuned and
produces slightly higher energy spread than the beams from
Fig. 4. The stability of the electron energy spectrum under
the presence of shot-to-shot fluctuations of the drive laser is
significantly improved: 90% of the accelerated beams have
an energy spread smaller than 5%, compared to 60% of the
beams in our reference case. The relative charge stability is
similar with 45% in the optimized and 38% in the reference
case. Both settings share similar laser conditions, but the
stability-optimized setting has a lower N2 concentration
(3.6% compared to 10%), and ∼70% plasma density in the
plateau.
The reason for the improved stability becomes evident

when comparing the correlations between the bunch charge
and the laser focus position—a main characteristic of
localized ionization-injection schemes [17]. For the stabil-
ity-optimized setting, the correlation of beam charge with
focus position is significantly reduced. In both cases the
relative energy spread has a clear optimum for the same

FIG. 3. Experimental optimization of LPA electron beams:
(a)–(c) Measured energy spectra; (d) measured objective function
(dots) with the cumulative best result (blue line); (e)–(g) Input
parameters with shot to shot measurements of the laser energy,
focus position, and gas flows for each input setting.

FIG. 4. Energy spectrum at optimized settings: averaged
spectrum (black) and standard deviation (gray area) over the
best 100 of 2500 measured shots with a Gaussian fit (σE;fit, blue)
and corresponding statistics. The energy spectra are normalized
to their respective median energy, to eliminate the effects of shot-
to-shot energy variations (1.5% rms) from the statistics.
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focus position. However, deviations from the optimum
increase the energy spread less in the optimized case. To
further elucidate the differences between both regimes, we
have modeled them using PIC simulations: as a result of the
lower N2 concentration and plasma density plateau, the
injected beams are significantly shorter in the high-stability
regime. As a variation in focus position mainly changes the
charge density of the injected bunch, the total charge
fluctuation is smaller for shorter beams. A comparison
of the longitudinal phase spaces for both settings [Fig. 5(e)]
shows that even though both cases develop roughly the
same energy chirp for the same variation of the focus
position, the shorter bunch length results in a smaller
projected energy spread. Consequently, tuning the bunch
length we can trade bunch charge and spectral density for
robustness against intensity fluctuations. The set points
found with the optimization method were still used after
several weeks and gave comparable performance.
In conclusion, we have studied a localized ionization

injection target, which generates high spectral density and
low energy spread electron beams through optimization of
beam loading. Providing electron beams for applications
requires finding the optimal working point of laser and
plasma parameters for high-quality beams within a com-
plex parameter space and then operating consistently at this
setting. We have introduced Bayesian optimization as a tool
to identify an optimized working point and, by proper
choice of the objective function, a new regime of high
stability. After finding a new regime, it is however crucial to
elucidate the underlying physics using correlations and
high-statistic measurements supported by simulations. To
demonstrate this concept we have traced stability improve-
ments back to a shortened bunch length, which reduces the

influence of energy chirp on the projected beam energy
spread. We could generate high-quality low energy spread
electron beams just by tuning readily accessible experi-
mental parameters.
Furthermore, BO is a very promising tool to optimize the

charge, divergence, and betatron photon yield in a laser-
plasma accelerator in real time [34]. Further optimizing the
spatiotemporal properties of the drive laser, additional
improvements might be achieved [35–37] and the use of
physics-informed surrogate models [12] could speed up the
optimization.
Combining together Bayesian optimization, PIC simu-

lations, and access to real-time measurements and control
settings in one system provides a powerful tool for the
design and operation of laser-plasma accelerators leading to
the demonstrated stable, high-quality beams. It can guide
our understanding of the complex interplay between the
experiment parameters and will thus become an important
method for the development and operation of future laser-
plasma accelerators.
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