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Conventionally neutral atmospheric boundary layers (CNBLs), which are characterized with zero
surface potential temperature flux and capped by an inversion of potential temperature, are frequently
encountered in nature. Therefore, predicting the wind speed profiles of CNBLs is relevant for weather
forecasting, climate modeling, and wind energy applications. However, previous attempts to predict the
velocity profiles in CNBLs have had limited success due to the complicated interplay between buoyancy,
shear, and Coriolis effects. Here, we utilize ideas from the classical Monin-Obukhov similarity theory in
combination with a local scaling hypothesis to derive an analytic expression for the stability correction
function ψ ¼ −cψ ðz=LÞ1=2, where cψ ¼ 4.2 is an empirical constant, z is the height above ground, and L is
the local Obukhov length based on potential temperature flux at that height, for CNBLs. An analytic
expression for this flux is also derived using dimensional analysis and a perturbation method approach. We
find that the derived profile agrees excellently with the velocity profile in the entire boundary layer obtained
from high-fidelity large eddy simulations of typical CNBLs.
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Introduction.—For well over a century, wall-bounded
turbulent flows have been studied extensively [1]. A focus
area is the derivation and characterization of the mean
velocity profile. In 1925, Prandtl [2] recognized that the
velocity profile in the inertial sublayer is approximately
logarithmic based on his mixing length hypothesis. In the
1930s, von Kármán [3,4] derived the logarithmic law of the
wall analytically using dimensional analysis. In 1956,
Coles [5] showed using measurement data that the velocity
profile can be described more accurately via the sum of the
logarithmic law and a wake function. Since then, the law of
the wall has been the pillar of the description of wall-
bounded turbulence [6–8]. Recently, the universality of the
law of the wall has been supported by theoretical and
experimental studies [9–11].
The dynamics in atmospheric boundary layers, where

most human activity and biological processes occur, are
much more complicated as turbulence is generated by shear
stress and buoyancy [12], while the Coriolis force creates a
wind veer [13]. In 1954, Monin and Obukhov [14]
introduced a stability correction function ψ to account
for deviations to the logarithmic wind speed profile caused
by thermal stratification. Based on the Buckingham Π
theorem, Monin and Obukhov concluded that ψ is only a
function of the atmospheric stability parameter z=Lw,
where z is the vertical height above the ground and Lw
is the Obukhov length based on the surface potential
temperature flux. The universality of this well-known
Monin-Obukhov similarity theory (MOST) [14–16] has
been established in the surface layers of stable and
convective atmospheric boundary layers in many field

experiments [17], as well as large eddy simulations
(LESs) [18]. Therefore, the MOST is nowadays regarded
as the starting point of modern micrometeorology [17].
Conventionally neutral atmospheric boundary layers

(CNBLs) are also frequently observed and are often
considered in fundamental studies [19–26]. In contrast to
stable and convective atmospheric boundary layers,
CNBLs are characterized with zero surface potential
temperature flux and capped by an inversion of potential
temperature. However, the classical MOST is not appli-
cable to CNBLs, because the surface potential temperature
flux is zero, due to which Lw is no longer a relevant scale
[18]. Many studies [23,27–35] have tried to predict the
velocity profile in CNBLs, but so far with limited success
since none of them have considered the effect of potential
temperature flux near the capping inversion layer.
Therefore, the logarithmic law of the wall without stability
correction is still commonly used to predict the wind speed
profile in CNBLs [36–40]. However, an analytical
description of the velocity profiles in CNBLs is of great
fundamental interest and relevant for meteorological appli-
cations [12,35].
Theory.—In this Letter, we derive the potential temper-

ature flux profile using dimensional analysis and a pertur-
bation method approach. To account for the deviation to the
logarithmic wind speed profile, we use ideas from the
MOST in combination with a local similarity hypothesis.
Therefore, we introduce a stability correction function ψ
that depends only on the local stability parameter z=L,
where L is the local Obukhov length based on the local
potential temperature flux. The canonical shape of ψ is
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determined by asymptotic analysis. The derived universal-
ity profiles for the potential temperature flux and the wind
speed profiles are confirmed by the excellent agreements
with the results of high-fidelity LESs.
Based on the dimensional analysis (a derivation can be

found in Sec. III of the Supplemental Material [41]), the
potential temperature flux can be written as

βz0q
u3�

¼ −ΠðRo;Zi; ξÞ ¼ −RorZisΠ1ðξÞ: ð1Þ

Here q is the potential temperature flux, u� is the friction
velocity, β is the buoyancy parameter, Π and Π1 are
dimensionless functions, Ro ¼ u�=ðjfjz0Þ is the Rossby
number, with f as the Coriolis parameter and z0 as the
roughness height, Zi ¼ N=jfj is the Zilitinkevich number
[28], with N as the free-atmosphere Brunt-Väisälä fre-
quency, and r and s are the power exponents for Ro and Zi,
respectively. The dimensionless parameter ξ ¼ z=h0, where
h0 ¼ h=ð1 − 0.052=3Þ and h is the boundary layer height at
which the total momentum flux reaches 5% of the surface
value. This conventional definition underestimates the
actual boundary layer height. The functional form of h0
follows from the fact that the dimensionless total momen-
tum flux follows a power law with exponent 3=2 [42]. We
note that the first equality in Eq. (1) is unconditionally
valid, although the corresponding functional form is hard to
determine analytically. The second equality is valid under
the presumed power-law dependence of Π on the two
independent dimensionless parameters Ro and Zi. The
values of s and r will be determined later from our
high-fidelity LES data.
We emphasize that other definitions for the boundary

layer height, which are based on, for example, the vertical
wind speed or potential temperature profiles, are also
commonly used [25,31,35]. In particular, the boundary
layer height ht is defined as the height at which the
potential temperature flux reaches its minimum value.
Previous studies [25,35,43–45] showed that the potential
temperature flux in CNBLs decreases linearly from zero at
the surface to a minimum value at z ¼ ht and then increases
to zero for z ≥ h0. As explained in Sec. IV of the
Supplemental Material [41], the ratio ht=h0 ≡ 1–2ϵ is a
function of Zi. However, as we will see later, the depend-
ence of ϵ on Zi is limited over the parameter regime under
consideration. Clearly, ϵ ≪ 1 represents the half-capping
layer thickness normalized by the height h0, where the
potential temperature flux recovers steeply to zero.
Therefore, we propose the following ordinary differential
equation to model the potential temperature flux:

−ϵΠ00
1 þ Π0

1 ¼ cΠ; Π1ð0Þ ¼ Π1ð1Þ ¼ 0: ð2Þ

Here cΠ is the slope of the dimensionless total potential
temperature flux −ðβz0qÞ=ðu3�ZisRorÞ in the surface layers,

which can be determined from simulation or measurement
data. The solution of Π1 reads

Π1 ¼
(
cΠ

�
ξ − eξ=ϵ−1

e1=ϵ−1

�
; ξ ≤ 1;

0; ξ > 1.
ð3Þ

Note that Eq. (2) and its solution Eq. (3) is reminiscent of
the classical singular perturbation method [46]: The outer
solution (close to the wall) is a linear function of ξ and the
inner solution (close to the capping inversion layer) is
controlled by a small parameter ϵ.
In contrast to the classical MOST [14] where the

normalized wind speed gradient is assumed to be a
universal function, we introduce a stability correction
function ψ to account for the deviation of the logarithmic
profile. Therefore, we write the wind speed profile as

κUmag

u�
¼ ln

�
z
z0

�
− ψ

�
z
L

�
; ð4Þ

where κ ¼ 0.4 is the von Kármán constant, Umag is the
mean wind speed, and ψ is the stability correction function
that depends only on the dimensionless stability parameter
z=L. According to the local scaling hypothesis [42,47], L is
defined as the local Obukhov length

1

L
≡ −

κβq
u3�

: ð5Þ

It is worth pointing out that the dimensionless slope
ðκz=u�ÞdUmag=dz is usually regarded as a universal func-
tion of the stability parameter z=L in the stable and
convective atmospheric boundary layers [48]. However,
under the assumption of Eq. (4), this slope is no longer a
universal function of z=L.
To determine the canonical shape of ψ , we assume

ψ ¼ −cψ
�
z
L

�
p
; ð6Þ

where p is the power exponent to be determined analyti-
cally below, and cψ is an empirical constant. Recall that
very close to the wall [see Eq. (3)]

Π1 → cΠξ ¼ cΠ
z
h0

as
z
h0

→ 0: ð7Þ

Then, from asymptotic analysis [49], we find that

z
L
¼ κz

z0
Π →

cΠκh0

z0
ZisRor

�
z
h0

�
2

as
z
h0

→ 0: ð8Þ

Zilitinkevich and Esau [23] showed that in the surface
layers of stable, truly neutral, and conventionally neutral
atmospheric boundary layers ψ ¼ −Cuz=LM. Here Cu is a
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dimensionless constant and LM is the combined turbulent
length scale, which in CNBLs can be estimated as
jfjLM=u� ¼ ð1þ C2

mZi2Þ−1=2, where Cm is an empirical
constant ([23], see also the Supplemental Material [41]). To
match with the result of Zilitinkevich and Esau [23] in the
surface layer, we find that p ¼ 1=2. Clearly, the determi-
nation of p is independent of the values of cΠ, cψ , r, s, and
ϵ. Thus, the wind speed profile is given by

κUmag

u�
¼

(
ln
�

z
z0

�
þ cψ

�
z
L

�
1=2

; ξ ≤ ξ0;

κG
u�
; ξ > ξ0:

ð9Þ

Here G is the geostrophic wind speed, ξ0 is the highest
intersection point of the curves described by the upper and
lower expressions in Eq. (9), z=L is the dimensionless
stability parameter predicted by the potential temperature
flux model [i.e., Eqs. (1) and (3)], and cψ is the empirical
constant that can be determined from simulation or
measurement data.
Validation.—To verify the universality of the wind speed

profile for CNBLs, we perform six high-fidelity LESs. In
the simulations, a CNBL over a flat surface with periodic
conditions in horizontal directions is considered. The flow
is initialized with uniform geostrophic wind speed and a
linear potential temperature profile with a constant gradient
[35,44]. The simulations are performed with an in-house
code [50–55], which employs a pseudospectral discretiza-
tion in the horizontal directions and a second-order finite
difference method in the vertical direction. We employ the
advanced anisotropic minimum dissipation model to para-
metrize the subgrid scale shear stress and potential temper-
ature flux [56]. The horizontal domain size is more than 6
times larger than the boundary layer height, and the grid
resolution is 2883. We ensure that all simulations have
reached the quasistationary state and the statistics are
averaged over one inertial period [57]. A summary of all
simulated cases is presented in Table I. The simulated
Zilitinkevich number Zi and Rossby number Ro range
covers the values found in typical CNBLs at mid to high
latitudes [58,59]. More details about the numerical method
and simulation setup can be found in the Supplemental
Material [41].
Figure 1 shows the vertical profile of the dimensionless

mean total momentum flux τ=τw, where τ is the total

momentum flux and τw is its surface value. All different
cases in Table I are shown in the figure (filled symbols).
Nieuwstadt [42] analytically determined that the total
momentum flux profile in stable atmospheric boundary
layers scales as τ=τw ¼ ð1 − z=hÞ3=2. In Fig. 1 we show that
this expression is still valid for CNBLs when we consider
the previously introduced boundary layer thickness
h0 ¼ h=ð1 − 0.052=3Þ. The finding that the dimensionless
momentum flux profiles obtained from all LESs collapse to
the theoretical curve (see Fig. 1) confirms that h0 is the
appropriate boundary layer height scale to consider.
To determine the values of the power indices r and s, we

take the vertical derivative of Eq. (1); see details in Sec. III
of the Supplemental Material [41]. Figure 2 shows the
dimensionless mean potential temperature gradient
lnð−βz0q0=u3�Þ versus (a) the Rossby number ln Ro and
(b) the Zilitinkevich number ln Zi in the surface layer,
where q0 ¼ dq=dξ. The slopes of the curve shown in the
figure determine the values of the power exponents r and s.
In the parameter regime under consideration r ¼ −1.002 ≈
−1 and s ¼ 1.004 ≈ 1 describe the data very well. We note
that the values of cΠ can also be determined from the figure
and the results are listed in Table I.
Figure 3 shows the vertical profile of the dimensionless

mean potential temperature flux q=jqjmax, which reduces to
almost zero at z=h0 ≥ 1. The potential temperature flux first
decreases linearly from zero at the surface to a minimum
value at z ¼ ht ≡ ð1 − 2ϵÞh0, and then increases rapidly to
zero in a narrow region (1 − 2ϵ ≤ z=h0 ≤ 1) since ϵ ≪ 1.

TABLE I. Summary of all simulated cases, where the Zi and Ro range covers the values found in typical CNBLs at mid to high
latitudes [58,59].

Case no. A B C D E F

Zi 51.2 88.7 88.7 88.7 88.7 153.6
Ro 2.7 × 107 4.5 × 104 3.7 × 105 3.2 × 106 2.7 × 107 2.7 × 107

ϵ 0.1186 0.1148 0.1191 0.1213 0.1224 0.1341
cΠ 0.0335 0.0335 0.0330 0.0329 0.0330 0.0336

FIG. 1. Vertical profile of dimensionless mean total momentum
flux τ=τw. Filled symbols, LES data; solid line, theoretical curve
given by τ=τw ¼ ð1 − z=h0Þ3=2.
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The value of ϵ is expected to depend only on Zi (see the
Supplemental Material [41]). The data in Table I show that
for the parameter range under consideration the variation of
ϵ is limited, and therefore, we take ϵ ¼ 0.12 to describe the

data here. Evidently, all LES data of the present Letter
(filled symbols) collapse very well to the introduced
theoretical model (solid line), which validates the chosen
approach. For comparison, the prediction based on a
turbulence closure given by Mauritsen et al. [43], the
direct numerical simulations (DNS) data performed by
Jonker et al. [60], and the LES data taken from Pedersen
et al. [44], Allaerts andMeyers [25], and Berg et al. [45] are
also shown in the figure. The overall agreement between
the theoretical prediction and the data from previous studies
[25,43–45,60] is very good, which confirms the univer-
sality of the proposed potential temperature flux profile.
Figure 4 shows the vertical profile of the dimensionless

wind speed for two typical cases, which covers the Zi and
Ro number range of typical CNBLs at mid to high latitudes
[58,59]. The filled symbols are LES data, the dashed line is
the theoretical prediction given by the logarithmic law, the
blue line is the prediction of Zilitinkevich and Esau [23],
the yellow line is the prediction of Gryning et al. [29], the
red line is the prediction of Kelly et al. [35], and the black
line is the prediction given by Eq. (9) with cψ ¼ 4.2, where
the potential temperature flux profile is modeled by Eq. (3)FIG. 2. Dimensionless mean potential temperature gradient in

the surface layer versus (a) the Rossby number Ro and (b) the
Zilitinkevich number Zi, where q0 ¼ dq=dξ. The values of the
slope are (a) r ¼ −1.002 ≈ −1 and (b) s ¼ 1.004 ≈ 1, which are
determined by a least-squares fitting procedure.

FIG. 3. Vertical profile of dimensionless mean potential tem-
perature flux q=jqjmax. Filled circles, LES data of the present
Letter; filled triangles, prediction based on a turbulence closure
given by Mauritsen et al. [43]; filled inverted triangles, DNS data
of Jonker et al. [60]; filled diamonds, LES data of Pedersen et al.
[44]; filled squares, LES data of Allaerts and Meyers [25]; filled
stars, LES data of Berg et al. [45]; solid line, theoretical
prediction given by Eq. (3) with ϵ ¼ 0.12.

FIG. 4. Vertical profile of mean wind speed for (a) case B and
(b) case F. Filled symbols, LES data; dashed line, prediction
given by the logarithmic law; blue line, prediction given by
Zilitinkevich and Esau [23]; yellow line, prediction given by
Gryning et al. [29]; red line, prediction given by Kelly et al. [35];
black line, prediction given by Eq. (9) with cψ ¼ 4.2.
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with cΠ ¼ 0.0332 and ϵ ¼ 0.12 (see Table I). The empirical
constant cψ is determined such that it can predict the wind
speed profiles of all cases in Table I with minimum
discrepancies. The figure shows that the logarithmic law
only accurately captures the wind speed in the lower 10%
of the boundary layer, also known as the surface layer
(shaded region). The theory given by Gryning et al. [29]
focuses on capturing the wind speed at the top of the
CNBL, but does not capture the effect of the low-level jet.
The theory given by Kelly et al. [35] is focused on the
lower part of the CNBL. The predictions by Zilitinkevich
and Esau [23] agree well with the LES data in the lower part
of the CNBL, but do not capture the low-level jet, which is
represented in our approach. In contrast, the agreement
between the proposed profile (9) and the LES data is nearly
perfect in the entire boundary layer and much better than all
previous approaches. This excellent agreement confirms
the universality of our proposed wind profile (9) in the
considered parameter range of CNBLs.
Summary.—We propose a universal velocity profile for

CNBL derived using a local similarity hypothesis com-
bined with ideas from the classical Monin-Obukhov
similarity theory. We introduce a stability correction
function ψ to account for the deviation of the logarithmic
law. The canonical shape of ψ is determined theoretically as
ψ ¼ −cψðz=LÞ1=2, where cψ ¼ 4.2 is an empirical constant
determined from simulation data, z is the vertical height
above the surface, and L is the local Obukhov length. An
analytical expression for the potential temperature flux
profile is also derived from dimensional analysis and
perturbation method. The universality of the proposed
profile (9) has been confirmed by its excellent agreement
with high-fidelity LES results for Ro ¼ ½4.5 × 104;
2.7 × 107� and Zi ∈ ½51; 154�, where the Zi and Ro number
range covers the range of values observed in typical CNBLs
at mid to high latitudes. Further work is required to assess
the applicability of the approach to other parameter
regimes.

We appreciate very much the valuable comments of the
anonymous referees. We acknowledge Dr. K. L. Chong and
Dr. Y. X. Li for insightful discussion. This work is part of
the Shell-NWO/FOM-initiative Computational sciences
for energy research of Shell and Chemical Sciences,
Earth and Live Sciences, Physical Sciences, Stichting
voor Fundamenteel Onderzoek der Materie (FOM) and
STW, and an STW VIDI Grant (No. 14868). This
work was carried out on the national e-infrastructure of
SURFsara, a subsidiary of SURF cooperation, the
collaborative ICT organization for Dutch education and
research.

*luoqin.liu@utwente.nl
†r.j.a.m.stevens@utwente.nl

[1] A. J. Smits, B. J. McKeon, and I. Marusic, High Reynolds
number wall turbulence, Annu. Rev. Fluid Mech. 43, 353
(2011).

[2] L. Prandtl, Bericht über Untersuchungen zur ausgebildeten
Turbulenz, Z. Angew. Math. Mech. 5, 136 (1925).

[3] T. von Kármán, Mechanische Ähnlichkeit und Turbulenz,
Nachr. Ges. Wiss. Göttingen Math. Phys. Klasse 5, 58 (1930).

[4] T. von Kármán, Mechanische Ähnlichkeit und Turbulenz,
Proc. Third Internat. Congr. Appl. Mech. Stockholm 1, 85
(1931).

[5] D. Coles, The law of the wake in the turbulent boundary
layer, J. Fluid Mech. 1, 191 (1956).

[6] H. Tennekes and J. L. Lumley, A First Course in Turbulence
(The MIT Press, Cambridge, Massachusetts, 1972).

[7] S. B. Pope, Turbulent Flows (Cambridge University Press,
Cambridge, England, 2000).

[8] P. Davidson, Turbulence: An Introduction for Scientists and
Engineers (Oxford University Press, Oxford, 2004).

[9] I. Marusic, J. P. Monty, M. Hultmark, and A. J. Smits, On
the logarithmic region in wall turbulence, J. Fluid Mech.
716, R3 (2013).

[10] P. Luchini, Universality of the Turbulent Velocity Profile,
Phys. Rev. Lett. 118, 224501 (2017).

[11] M. Samie, I. Marusic, N. Hutchins, M. K. Fu, Y. Fan, M.
Hultmark, and A. J. Smits, Fully resolved measurements of
turbulent boundary layer flows up to Reτ ¼ 20000, J. Fluid
Mech. 851, 391 (2018).

[12] G. G. Katul, A. G. Konings, and A. Porporato, Mean
Velocity Profile in a Sheared and Thermally Stratified
Atmospheric Boundary Layer, Phys. Rev. Lett. 107,
268502 (2011).

[13] M. F. Howland, A. S. Ghate, and S. K. Lele, Influence of the
geostrophic wind direction on the atmospheric boundary
layer flow, J. Fluid Mech. 883, A39 (2020).

[14] A. S. Monin and A. M. Obukhov, Basic laws of turbulent
mixing in the surface layer of the atmosphere, Tr. Akad.
Nauk SSSR Geophiz. Inst. 24, 163 (1954).

[15] A. M. Obukhov, Turbulence in an atmosphere with inho-
mogeneous temperature, Trans. Inst. Teoret. Geoz. Akad.
Nauk SSSR 1, 95 (1946).

[16] A. S. Monin and A. M. Yaglom, Statistical Fluid Mechan-
ics, Vol. 1. Mechanics of Turbulence (The MIT Press,
Cambridge, Massachusetts, 1971).

[17] T. Foken, 50 years of the Monin–Obukhov similarity theory,
Boundary-Layer Meteorol. 119, 431 (2006).

[18] S. Khanna and J. G. Brasseur, Analysis of Monin-Obukhov
similarity from large-eddy simulation, J. Fluid Mech. 345,
251 (1997).

[19] R. A. Brost, D. H. Lenschow, and J. C. Wyngaard, Marine
stratocumulus layers. Part 1: Mean conditions, J. Atmos.
Sci. 39, 800 (1982).

[20] A. L. M. Grant, Observations of boundary layer structure
made during the 1981 KONTUR experiment, Q. J. R.
Meteorol. Soc. 112, 825 (1986).

[21] M. Tjernström and A.-S. Smedman, The vertical turbulence
structure of the coastal marine atmospheric boundary layer,
J. Geophys. Res.: Oceans 98, 4809 (1993).

[22] S. S. Zilitinkevich and I. N. Esau, On integral measures of
the neutral barotropic planetary boundary layer, Boundary-
Layer Meteorol. 104, 371 (2002).

PHYSICAL REVIEW LETTERS 126, 104502 (2021)

104502-5

https://doi.org/10.1146/annurev-fluid-122109-160753
https://doi.org/10.1146/annurev-fluid-122109-160753
https://doi.org/10.1002/zamm.19250050212
https://doi.org/10.1017/S0022112056000135
https://doi.org/10.1017/jfm.2012.511
https://doi.org/10.1017/jfm.2012.511
https://doi.org/10.1103/PhysRevLett.118.224501
https://doi.org/10.1017/jfm.2018.508
https://doi.org/10.1017/jfm.2018.508
https://doi.org/10.1103/PhysRevLett.107.268502
https://doi.org/10.1103/PhysRevLett.107.268502
https://doi.org/10.1017/jfm.2019.889
https://doi.org/10.1007/s10546-006-9048-6
https://doi.org/10.1017/S0022112097006277
https://doi.org/10.1017/S0022112097006277
https://doi.org/10.1175/1520-0469(1982)039%3C0800:MSLPMC%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1982)039%3C0800:MSLPMC%3E2.0.CO;2
https://doi.org/10.1002/qj.49711247314
https://doi.org/10.1002/qj.49711247314
https://doi.org/10.1029/92JC02610
https://doi.org/10.1023/A:1016540808958
https://doi.org/10.1023/A:1016540808958


[23] S. S. Zilitinkevich and I. N. Esau, Resistance and heat-
transfer laws for stable and neutral planetary boundary
layers: Old theory advanced and re-evaluated, Q. J. R.
Meteorol. Soc. 131, 1863 (2005).

[24] S. S. Zilitinkevich, I. Esau, and A. Baklanov, Further com-
ments on the equilibrium height of neutral and stable
planetary boundary layers, Q. J. R. Meteorol. Soc. 133,
265 (2007).

[25] D. Allaerts and J. Meyers, Large eddy simulation of a large
wind-turbine array in a conventionally neutral atmospheric
boundary layer, Phys. Fluids 27, 065108 (2015).

[26] D. Allaerts and J. Meyers, Boundary-layer development and
gravity waves in conventionally neutral wind farms, J. Fluid
Mech. 814, 95 (2017).

[27] S. S. Zilitinkevich, V. L. Perov, and J. C. King, Near-surface
turbulent fluxes in stable stratification: Calculation for use in
general circulation models, Q. J. R. Meteorol. Soc. 128,
1571 (2002).

[28] I. N. Esau, Parameterization of a surface drag coefficient
in conventionally neutral planetary boundary layer, Ann.
Geophys. 22, 3353 (2004).

[29] S.-E. Gryning, E. Batchvarova, B. Brümmer, H. Jorgensen,
and S. Larsen, On the extension of the wind profile over
homogeneous terrain beyond the surface boundary layer,
Boundary-Layer Meteorol. 124, 251 (2007).

[30] M. Kelly and S.-E. Gryning, Long-term mean wind profiles
based on similarity theory, Boundary-Layer Meteorol. 136,
377 (2010).
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