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Wavelength selection in reaction-diffusion systems can be understood as a coarsening process that
is interrupted by counteracting processes at certain wavelengths. We first show that coarsening in mass-
conserving systems is driven by self-amplifying mass transport between neighboring high-density
domains. We derive a general coarsening criterion and show that coarsening is generically uninterrupted
in two-component systems that conserve mass. The theory is then generalized to study interrupted
coarsening and anticoarsening due to weakly broken mass conservation, providing a general path to
analyze wavelength selection in pattern formation far from equilibrium.
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To predict the wavelength of patterns in highly nonlinear
systems is a critical open problem, as wavelength selection
is ubiquitous in a large range of nonequilibrium systems
[1–7]. While the amplitude equation formalism and weakly
nonlinear analysis have been highly successful in the
vicinity of onset [8], these approaches are not informative
for large amplitude patterns far away from onset. For one-
component systems, a theory for wavelength selection
based on a multiple-scale analysis has been developed
[9,10], but generalizations to multicomponent systems have
remained elusive.
In this Letter, we propose that wavelength selection in

reaction-diffusion systems can be understood as a coarsening
process that is interrupted and even reversed by counter-
acting processes at certain wavelengths. Specifically, we
study two-component systems and develop a theory for the
mass-conserving case first where coarsening is uninter-
rupted. We then generalize this theory to account for source
terms that break mass conservation and counteract the
coarsening process.
While coarsening is well understood as minimization

of the free energy for systems relaxing to thermal equilib-
rium (such as binary mixtures [11,12]), this reasoning is
generally not applicable for nonequilibrium systems such as
most reaction-diffusion systems. Two-component mass-
conserving reaction-diffusion (MCRD) systems serve as
paradigmatic models for intracellular pattern formation

[13–19] and are used as phenomenological models for a
wide range of systems including precipitation patterns [20],
granular media [21], and braided polymers [22]. It has
long been speculated that two-component MCRD systems
generically exhibit uninterrupted coarsening [16,19,23,24].
However, it has remained unclear whether coarsening always
goes to completion in two-component MCRD systems,
largely owing to a lack of insight into the underlying
physical processes.
Here, we show that coarsening is driven by positive

feedback in the competition for mass, derive a simple
and quantitative description of the coarsening dynamics,
and explain why coarsening is generically uninterrupted
in two-component MCRD systems. As they are
grounded in a phase-space analysis [25], our results
are independent of the specific mathematical form of the
reaction kinetics.
Building on the insights into the coarsening process

in the mass-conserving case, we elucidate and quantify
the physical mechanisms underlying wavelength selection
in the presence of weak source terms (weakly broken
mass conservation). Coarsening arrests when mass com-
petition is balanced by production and degradation.
Moreover, domain splitting—owing to the destabilization
of plateaus—reverses coarsening. Both are graphically
understood by a generalization of the phase-space analysis.
Since our approach builds on studying the spatial redis-
tribution of a nearly conserved quantity, we expect that
it can be generalized beyond two-component reaction-
diffusion systems, for instance, to systems with more
components and to hydrodynamic models for active matter
systems [3,26–29].
The general form of a reaction-diffusion system with two

components, u and v, can be written as
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∂tuðx; tÞ ¼ Du∇2uþ fðu; vÞ þ εs1ðu; vÞ; ð1aÞ

∂tvðx; tÞ ¼ Dv∇2v − fðu; vÞ þ εs2ðu; vÞ; ð1bÞ

on a domain Ω, with either no-flux or periodic boundary
conditions [30]. For specificity, we choose Du < Dv [31].
The reaction term f describes conversion between u and v,
while the source terms s1;2 with a (small) dimensionless
source strength ε break mass conservation.
Let us first analyze the mass-conserving case ε ¼ 0.

Then, the total density ρ ¼ uþ v is conserved such that the
average ρ̄ ¼ jΩj−1 RΩ dxρðx; tÞ remains constant. The time
evolution of ρ is given by [13,22,23,25]

∂tρðx; tÞ ¼ Dv∇2ηðx; tÞ ð2Þ

with the mass-redistribution potential defined by
η ≔ vþ ðDu=DvÞu; the corresponding dynamical equation
for ηðx; tÞ is given in Supplemental Material [32], Sec. 1.1.
For stationary patterns ½ũðxÞ; ṽðxÞ�, the mass-redistribution
potential must be spatially uniform, ηðxÞ ¼ ηstat. Based on
this, one can analyze two-component MCRD systems in
the ðu; vÞ phase plane [25]: There, stationary patterns are
constrained to a linear subspace, vþ ðDu=DvÞu ¼ ηstat,
called flux-balance subspace (FBS); see Fig. 1(b). The
intercept ηstat is determined by the balance of the spatially
integrated reactive flows (total turnover balance), corre-
sponding (approximately) to a balance of areas [shaded in
red in Fig. 1(b)] enclosed by the FBS and the reactive
nullcline (f ¼ 0, NC). The FBS-NC intersection points

correspond to the plateau(s) and inflection point(s) of a
stationary pattern. Two types of patterns can be distin-
guished—mesas and peaks. The elementary mesa pattern is
composed of two plateaus, connected by an interface (or
“kink”), while a peak forms when the maximum density
does not saturate in a high-density plateau [Fig. 1(a);
compare Fig. 2(a)] [25,47]. We begin the analysis with
peak patterns and then generalize the results to mesas.
A mass-competition instability drives coarsening.—

Coarsening requires the transport of mass between
peaks. Because mass transport is diffusive, it is fastest
on the shortest length scales; hence, the dominant process
is competition for mass between neighboring peaks
[Fig. 1(a)]. Thus, as an elementary case, we study two
peaks in a “box” with no-flux boundary conditions.
Consider a situation (“coarsening limit”) where the peaks
are well separated, such that diffusive transport is limiting.
We can then approximate the peaks to be in (regional)
quasisteady state (QSS), such that η ¼ ηstatðMÞ at a
given peak with total mass M. This approximation is
commonly applied in thin film theory [48,49] and
Ostwald ripening [11,12].
Starting from two identical, stationary peaks, each with

total massM0, the dynamics of the mass difference between
them (MR;L ¼ M0 � δM)—obtained by integration of
Eq. (2) over a single peak—is determined by the η gradients
in the plateau between them [indicated by the orange
arrow in Fig. 1(c)]. Using QSS at each peak separately,
the mass-redistribution potential at the peaks is given by
ηR;L ¼ ηstat � ð∂MηstatjM0

ÞδM. Between the peaks, η obeys
∂2
xη ¼ 0, because diffusive relaxation within the plateau is

fast compared to the peak evolution (see Supplemental
Material Sec. 2 [32] for details). Thus, in 1D, the resulting
gradient in η is linear and determined by η ¼ ηR;L at the peak
positions. For a given peak separation Λ, this approximation
determines the dynamics of mass redistribution

∂tδM ≈ −
2Dv

Λ
ð∂MηstatjM0

ÞδM≕ σDδM: ð3Þ

The subscript D denotes the diffusion-limited regime. If the
growth rate σD is positive, an instability driven by positive
feedback in competition for mass results in coarsening.
Hence, the condition for uninterrupted coarsening reads

∂MηstatðMÞ < 0; ð4Þ

i.e., that ηstatðMÞ is a strictly monotonically decreasing
function for all stable stationary single-peak solutions.
This recovers a previous, mathematically derived coarsening
condition [13,23]. Importantly, the analysis presented here
gives insight into the underlying physical mechanism and
shows that not only the criterion for coarsening, but the
entire temporal evolution of coarsening is determined by
∂Mηstat via Eq. (3) [50]. We learn that the functional

(a)

(c)

(b)

FIG. 1. (a) Illustration of a stationary peak with peak mass M.
Increasing the mass to M þ δM increases the peak amplitude to
ûþ δû. (b) Representation of the stationary peak in phase space
(thick blue line), which is constrained to the FBS (dashed blue
line). The FBS offset ηstatðMÞ is determined by a balance of total
reactive turnovers (areas shaded in red). For a peak with increased
mass M þ δM, and thus increased peak amplitude δû, the FBS
shifts downward δηstat until total turnover balance is restored
(balance of green-shaded areas). (c) After a perturbation of two
identical stationary peaks, the gradient in the mass-redistribution
potential η (orange line) drives mass transport between the peaks
(orange arrow) such that the larger (smaller) peak grows (shrinks)
further (blue arrows).
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dependence of the mass-redistribution potential on the peak
mass, ηstatðMÞ, plays a role analogous to the functional
dependence of the chemical potential on the droplet size that
drives Ostwald ripening or to the film height in dependence
of droplet size that drives coarsening of unstable thin
films [48,49].
Generic coarsening laws for mass-conserving sys-

tems.—To show that coarsening is uninterrupted, we need
to show that the criterion Eq. (4) holds and continues to
hold as small peaks disappear, causing the mass of the
remaining peaks to increase. For an intuitive argument,
consider a single stationary peak with mass M [see
Fig. 1(a)] and its representation in phase space, the blue
line in Fig. 1(b). Add an amount δM of mass and hold ηstat
fixed for the moment (for the sake of argument). Fixing ηstat
also fixes the plateau u−. Therefore, the additional mass
will increase the peak amplitude û [Fig. 1(b)], causing the
reactive turnover to the right of u0 to increase. The resulting
imbalance of total turnover entails a net reactive flow that
shifts the flux-balance subspace downward, i.e., lowers
ηstat, to restore total turnover balance. We conclude that
ηstatðMÞ is generically a monotonically decreasing function.
(More rigorous arguments are given in Supplemental
Material Secs. 4 and 5 [32]).
Let us now turn to the dynamic coarsening laws. As an

example, consider fex ¼ ð1þ uÞv − u=ð1þ uÞ, where the
first and second terms may, for instance, describe protein
recruitment and first-order enzymatic detachment, respec-
tively. A simple scaling argument [51] yields a power-law
relation ηstatðMÞ ∼M−α, where the exponent depends on
the specific reaction kinetics (α ¼ 2=3 for the example
above); see Fig. 2(b). In a large system containing multiple
peaks, the average peak separation hΛi is linked to the
characteristic peak mass by hMi ¼ ðρ̄ − ρ−ÞhΛi, where ρ−
is the total density in the low-density plateau between
the peaks and h·i denotes an average over the entire
system. As peaks collapse, with a typical time given by
the inverse growth rate of the mass-competition instability
t ∼ σ−1D , the average peak separation hΛi will increase.

Combining σD∼−h∂Mηstati=hΛi with h∂Mηstati∼hMi−α−1∼
ðρ̄hΛiÞ−α−1 yields power-law coarsening with hΛiðtÞ∼
t1=ð2þαÞ; see Fig. 2(c) and Fig. S4 [32]. Moreover, using
appropriate scaling amplitudes, the coarsening trajectories
for different average masses ρ̄ can be collapsed onto a
single master curve obtained from ∂Mηstat (see
Supplemental Material Sec. 3 [32]). Power-law coarsening
in 1D has previously been found for peaklike droplets
formed during the dewetting of thin liquid films [48].
As peaks collapse, those remaining grow in mass and

height. When the density at the peak maximum saturates in
a high-density plateau (corresponding to a FBS-NC inter-
section point in phase space), a mesa pattern starts to
form [Fig. 2(a) and Fig. S3 [32] ] [52]. For such mesas,
somewhat more subtle arguments show that ηstatðMÞ
remains a monotonically decreasing function (see
Supplemental Material Sec. 5 [32]). In essence, changing
M shifts the interface positions and, thus, changes the width
of a mesa’s plateau. As the density profile approaches
the limiting plateaus u�ðη∞statÞ through exponential tails,
ηstatðMÞ approaches η∞stat exponentially slowly [see the inset
in Fig. 2(b)], where we define η∞stat as the limit of ηstat for the
stationary pattern on an infinite domain (see Supplemental
Material Sec. 5.1 [32]). Using the same scaling arguments
as for peaks, one obtains a logarithmic coarsening law for
all mesa patterns, as in the one-dimensional Cahn-Hilliard
model [53]. For the concrete example fex, we find excellent
agreement between finite-element simulations and hΛiðtÞ
obtained from ηstatðMÞ by these scaling arguments [see
Fig. 2(c)]. Based on the physical insights presented above,
a generalization to more than one spatial dimension is
straightforward. For mesalike droplets with radius R, one
finds ηstat − η∞stat ∼ R−1, which yields power-law coarsening
with the universal exponent 1=3 (see Supplemental
Material Sec. 5.4 [32]). For peaklike droplets, we expect
system-dependent exponents as in 1D.
The limit of large Dv.—For Dv → ∞, mass redistrib-

ution by v diffusion becomes instantaneous, such that the
reactive conversion between u and v, which drives the

(a) (b) (c)

FIG. 2. (a) Illustration of the peak to mesa transition as the total massM is increased. (b) The function ηstatðMÞ obtained by numerical
continuation of the stationary solutions for the reaction kinetics fex. Crossover from power law for peak patterns (amplitude not
saturated) to exponential approach to η∞stat for mesa patterns. (c) Coarsening dynamics from finite element simulations for fex (black
circles; mean peak distance averaged over four independent runs started from random initial conditions; parameters:Du ¼ 1,Dv ¼ 104,
ρ̄ ¼ 1.5, and system size jΩj ¼ 2 × 105, periodic boundary conditions). The red line shows the analytic prediction based on σD from
ηstatðMÞ, shown in (b), via Eq. (3). After an initial transient, power-law coarsening Λ ∼ t3=8 for peaks is observed, which flattens into
logarithmic coarsening for mesas.
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growth or shrinking of mesas or peaks, becomes limiting.
In this reaction-limited case, we find σR ≈ ð∂MηstatÞ
linthfviint, where lint is the interface width and h·iint
denotes the average over the interface region (see
Supplemental Material Sec. 6 [32] for details and numerical
verification). Comparing with Eq. (3) shows that the
coarsening criterion Eq. (4) holds in both regimes, and
the crossover from diffusion- to reaction-limited coarsening
occurs at Dv=Λ ≈ linthfviint.
Weakly broken mass conservation.—With an under-

standing for the coarsening dynamics in the strictly
mass-conserving system, we now consider the effect of
slow production and degradation for 0 < ε ≪ 1. We will
see that these additional processes interrupt coarsening
[1,2,26,54] and can reverse it by inducing peak and mesa
splitting [5,7,55], thus selecting a range of stable pattern
wavelengths. In the presence of source terms, the time
evolution of the total density ρ is governed by

∂tρ ¼ Dv∂2
xηþ εsðu; vÞ; ð5Þ

with the total source s ≔ s1 þ s2. Hence, the average mass
hρi is no longer a control parameter but a time-dependent
variable that is determined indirectly by a balance of
production and degradation (in short, source balance).
In phase space, there are now two reactive nullclines, one
each for u and v, which both converge to f ¼ 0 for ε → 0.
Their intersection point(s) determine(s) the homogeneous
steady state (HSS) ρHSS that balances the total source term.
In the following, we restrict ourselves to mesa patterns.

To lowest order in ε, source balance determines the
“half lengths” L� of the upper and lower plateaus (see
Supplemental Material Sec. 7 [32]). Along the plateaus,
the spatial gradients induced by slow production or
degradation (ε small) are shallow, such that the dynamics
is (approximately) slaved to the nullcline f ¼ 0 [see
Fig. 3(b)]. This justifies a local equilibrium approximation

sðu; vÞ ≈ s½u�ðρÞ; v�ðρÞ�≡ s�ðρÞ in Eq. (5), where the local
equilibria are defined by fðu�; v�Þ ¼ 0 and u� þ v� ¼ ρ.
On the short scale of the interface width, the weak source
term is negligible, and each interface constrained to a flux-
balance subspace. We are now in a position to generalize
the phase-space analysis introduced in Ref. [25] and
analyze interrupted coarsening and mesa splitting.
(i) Peak and mesa splitting.—Consider the fully coars-

ened state for ε ¼ 0 and add a small source term such that
s�ðρþÞ < 0 and s�ðρ−Þ > 0 [i.e., ρ− < ρHSS < ρþ; see
Fig. 3(b)] [56]. The upper plateau is depressed by net
degradation and is refilled by inflow from the interfaces that
connect to the lower plateau where net production prevails.
The longer the plateaus (and the larger ε), the more they
curve toward ρHSS. Since ρ− < ρHSS < ρþ, ρðxÞ will
eventually enter the interval of lateral instability ½ρ−lat; ρþlat�
(where ∂ρη

� < 0), triggering a nucleation event that results
in the splitting of the mesa [see Fig. 3(a) andMovie 2 [32] ].
A simple approximation for the threshold wavelength
ΛsplitðεÞ where this happens is derived in Supplemental
Material, Sec. 7.1 [32]. Comparison with numerical sim-
ulations shows excellent agreement [see Fig. 3(d)].
(ii) Interrupted coarsening.—Intuitively, production

and degradation can counteract the mass-competition
instability. To determine the corresponding length scale
Λstop where coarsening arrests, we consider the stability
of two neighboring, symmetric mesas. A perturbation
that moves a small amount of mass from one mesa to
the other [Fig. 3(c)] has two effects: First, it shifts the
mass-redistribution potential at the interfaces, leading to
mass transport that further amplifies the perturbation
with rate σDðΛÞδM as in the strictly mass-conserving
situation; cf. Eq. (3). Second, the changed lengths δL ¼
δM=ðρþ − ρ−Þ of the two mesas result in net production
(degradation) in the shorter (longer) mesa with rate
εjs�ðρouterÞjδL [indicated by the purple arrows in Fig. 3(c)].

(a) (b) (c) (d)

FIG. 3. Wavelength selection by weakly broken mass conservation. (a),(b) Mesa splitting: (a) real space profiles of ρ̃ðxÞ and η̃ðxÞ and
(b) phase space in ðρ; ηÞ coordinates, with the source term in local equilibrium approximation plotted below. The green shaded area
indicates the region of lateral instability. (c) Interrupted coarsening due to a balance of production, degradation, and mass redistribution
between neighboring mesas. (d) Regimes separated by interrupted coarsening (circles) and mesa splitting (squares) as well as analytic
approximations (blue and green lines) for large Λ and small ε. While in the coarsening regime (blue) stationary patterns are unstable, no
stationary patterns exist in the mesa-splitting regime (green). In the regime of small Λ and large ε, corrections become large and the
approximations do not hold (see Supplemental Material Sec. 7 [32]). Parameters: Du ¼ 0.1, Dv ¼ 1, and p ¼ 2.
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Here ρouter denotes the total density of the outer plateau
[the inner plateau shifts as a whole and does not change in
length; see Fig. 3(c)]. Together, the balance of both processes
determinesΛstop (see SupplementalMaterial Sec. 7.2 [32] for
details)

σDðΛstopÞ ≈ ε
js�ðρouterÞj
ρþ − ρ−

: ð6Þ

As a concrete example, we apply Eq. (6) to the “Brusselator”
model [57] (f ¼ u2v − u, s ¼ p − u) and find excellent
agreement with numerics [Fig. 3(d)]. Notably, the simple
estimate given by Eq. (6) generalizes previous, mathemati-
cally obtained results [54,58].
Our analysis shows that the mechanisms underlying

mesa splitting and interrupted coarsening are distinct. In
particular, the length scale where coarsening stops is much
smaller than the length scale where mesas and peaks
split [see Fig. 3(d)]. This implies that there are stable
periodic patterns for a large, continuous range of wave-
lengths (multistability), as was shown previously for the
Brusselator [54,55,57]. Similarly, multistability of wave-
lengths was recently found in a hydrodynamic model for
flocking [3]. Interestingly, a unique length scale is selected
once noise is accounted for [4]. Noise-driven wavelength
selection was also observed in an “active model B” [59]. It
would be interesting to study whether this phenomenon is
also found in reaction-diffusion systems.
Another interesting open problem are systems with

cross diffusion and density-dependent diffusion coeffi-
cients (see, e.g., Refs. [60–63]). We also expect that our
approach can be generalized to systems with more than
two components, higher spatial dimensions, and also
beyond reaction-diffusion systems. In particular, conserved
densities (particle numbers) are a generic feature of many
active matter systems in which coarsening and length-scale
selection (“microphase separation”) are of growing interest
[3,26–29,59,64–70].
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