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We propose to use chirped pulses propagating near a band gap to remotely address quantum emitters.
We introduce a particular family of chirped pulses that dynamically self-compress to subwavelength spot
sizes during their evolution in a medium with a quadratic dispersion relation. We analytically describe how
the compression distance and width of the pulse can be tuned through its initial parameters. We show that
the interaction of such pulses with a quantum emitter is highly sensitive to its position due to effective
Landau-Zener processes induced by the pulse chirping. Our results propose pulse engineering as a powerful
control and probing tool in the field of quantum emitters coupled to structured reservoirs.
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An exciting platform in quantum optics, both in the
microwave [1–8] and the optical [9–19] regime, is obtained
by coupling quantum emitters to photonic structures where
band gaps and dispersion relations can be engineered.
In essence, these systems allow enhancing and tailoring
subwavelength light-matter interaction and bath-mediated
coupling between quantum emitters. There are multiple
applications in the context of quantum simulation [12,13]
and computation [4,7,15], as well as in exploring unconven-
tional quantum optics [1–3,5,6,8–11,14,16–19]. Most of these
setups rely on, or would benefit from, the possibility of
electromagnetically addressing individual quantum emitters.
However, such addressing can be challenging due to,
for instance, insufficient (e.g., subwavelength) separation
between contiguous emitters or phase mismatch between
outside radiation and the electromagnetic modes of the
structure. Even in platforms where local probes are available,
such as superconducting circuits, these probes might intro-
duce unwanted decoherence and lack the flexibility that a fully
tunable local probe could provide. A potential route toward
such individual addressing could be paved by active electro-
magnetic engineering, where not only the dispersion relation
but also the time-dependent state of the electromagnetic
environment is tailored.
In this Letter, we explore the possibility of exploiting

active engineering in structured electromagnetic reservoirs.
In particular, we introduce a specific family of chirped
electromagnetic pulses and show that, in a medium display-
ing a quadratic dispersion relation above a band gap, their
free evolution causes them to dynamically self-compress into
a single, potentially subwavelength spot. Self-compression
of chirped pulses using materials with nonlinear electro-
magnetic response (e.g., with intrinsic Kerr nonlinearities)
have been exploited before [20–22]. In contrast, here we use
nonlinear dispersion relations that can be engineered with

linear lossless materials (e.g., photonic crystals). We then
study the interaction between these chirped pulses and a
quantum emitter, demonstrating the strong impact of the
pulse self-compression on the dynamics of the emitter.
Specifically, a quantum emitter situated at the compression
spot is shown to display radically different dynamics than a
quantum emitter situated at any other position. Our results
therefore suggest that chirped pulses in structured electro-
magnetic media can be used to remotely address individual
quantum emitters within an array with subwavelength
separation [see Fig. 1(a) for a schematic representation].
While we discuss our results in the context of structured
photonic reservoirs, our results can be extended to other
implementations where bosonic excitations propagating near
a band gap couple to quantum emitters (e.g., phononic
networks coupled to color centers in diamond [23]).
More specifically, we consider an electromagnetic medium

extended along the z axis displaying an energy band gap for
electromagnetic modes propagating along z with wave vector
k ¼ kez. The band gap is characterized by a cutoff frequency
ωc, below which there are no z-propagating modes. We
consider that for frequencies 7ω≳ ωc the dispersion relation
of the propagating modes can be written as

ωðkÞ ¼ ωc þ
v2

2ωc
k2: ð1Þ

Here v is a dimensional parameter characterizing the band
curvature. We assume the z-propagating electromagnetic
modes to be tightly confined in the transverse ðx; yÞ plane
in order to increase the interaction with quantum emitters, as
discussed later. The propagating electromagnetic modes for a
given polarization can then be described by a single mode
index, namely, their longitudinal wave number k, and the
single band Eq. (1). As mentioned before, the considered
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electromagnetic medium can be implemented either in the
microwave regime or in the optical regime.
In the medium defined above, we focus on the time

dynamics of a single component of the electric field as a
function of z evaluated at a given position in the transverse
plane, say ðx0; y0Þ. We label such scalar electric field as
Eðz; tÞ ¼ 2RefEþðz; tÞg. As discussed later, Eðz; tÞ is
relevant to describe the electric-dipole interaction with a
quantum emitter placed at ðx0; y0; zÞ. The first main result
of this Letter is to propose and parametrize a particular
family of chirped electromagnetic pulses that dynamically
self-compress due to the dispersion relation given by
Eq. (1). These pulses depend on five real parameters
ðk0; df; σf;ϕ; NÞ, defined below, and can be written as

Eþðz; tÞ≡ jEþðz; tÞjeiθðz;tÞeiϕeiðk0z−ω0tÞ: ð2Þ

Here k0 is the carrier wave number with corresponding
frequency ω0 ≡ ωðk0Þ and ϕ is a constant phase. The
amplitude of the pulse is given by

jEþðz; tÞj≡ N
kcσðtÞ

exp

�
−

σ2f
2σ4ðtÞ

�
z −

vt
η

�
2
�
; ð3Þ

where kc ≡ ωc=v and η≡ kc=k0. The time-dependent pulse
width is given by

σðtÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ4f þ

s2ðdf; tÞ
k4c

4

s
; ð4Þ

where sðz; tÞ≡ ηkcz − ωct is a spatiotemporal dimension-
less function, σf is the spot size, and df is the focal
distance. The constant N is a pulse amplitude parameter.
The time-dependent phase in Eq. (2), which is responsible
for the chirping, is given by

θðz; tÞ≡ −
sðdf; tÞs2ðz; tÞ
2η2k4cσ4ðtÞ

þ 1

2
arctan

�
sðdf; tÞ
k2cσ2f

�
: ð5Þ

The pulse Eðz; tÞ is shown in Fig. 1(b) at four particular
instants of time, taking k0 > 0 (it propagates rightward). At
t ¼ 0 the pulse, centered at z ¼ 0, is down-chirped, i.e., the
wavelength at the front of the pulse is larger than at its tail.
As time increases, free evolution in the quadratic dispersion
relation induces self-compression of the pulse. Specifically,
the width σðtÞ in Eq. (4) becomes smaller following the
decrease of the function sðdf; tÞ. Maximum compression
occurs at a specific time tf ≡ ηdf=v, where the width
reaches its minimum σðtfÞ ¼ σf and the spatial extension
of the pulse is minimized around a compression point
z ¼ df. At this time, all the components of the pulse sync in
phase, namely, θðz; tfÞ ¼ 0. At latter times t > tf the pulse
becomes up-chirped and it expands in size. In principle, the
compression distance df and width σf of the pulse can be
arbitrarily chosen, allowing for deep subwavelength com-
pression (σf ≪ λ0 ≡ 2π=k0). In Fig. 1(c), we show the
mean frequency ω̄≡ R

R ωpðωÞdω and standard deviation
Sω ≡ ½RRðω − ω̄Þ2pðωÞdω�1=2 of the pulse at z ¼ 0 as a
function of the compression width σf, using pðωÞ≡
jẼð0;ωÞj= RR jẼð0;ωÞjdω with Ẽðz;ωÞ≡ð2πÞ−1=2RREðz;tÞ
expð−iωtÞdt. Stronger compression (lower σf) requires
higher mean pulse frequencies and wider distributions in
frequency space. We consider hereafter sufficiently
large spot sizes and small carrier wave numbers, say
σf ≳ 10−1λ0 and k0 ≲ 10−1ωc=v, such that the spectral
properties of the pulse are consistent with the assumptions
considered (e.g., single quadratic band approximation). The
frequency distribution of the pulse does not significantly
depend on df.

FIG. 1. (a) Quantum emitters embedded in an electromagnetic
waveguide. A time-dependent driving applied at the origin of the
coordinate system creates a chirped self-compressing electro-
magnetic pulse. At a time tf the pulse becomes compressed at a
distance df from the origin, reaching a minimum width σf . Inset:
Quadratic dispersion relation of the waveguide. The distribution
of the pulse wave number along z is centered around k0 ¼ 2π=λ0.
(b) Spatial profile of the electric field of the chirped pulse at
different times. The electric field is normalized by its maximum
value Emax ¼ maxd;t Eðd; tÞ. (c) Mean frequency ω̄ and standard
deviation Sω (defined in the text) of the electric field pulse as a
function of the compression width σf. Parameters used:
ω0=ωc ¼ 1.005, df=λ0 ¼ 7.5, σf=λ0 ¼ 0.21, ϕ ¼ 0.
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One can show that Eðz; tÞ, as defined above, is consistent
within electrodynamics in the medium Eq. (1). Indeed,
Eðz; tÞ has been constructed as a particular linear
combination of electromagnetic field modes, engineered
in analogy to the wave packet contracting quantum dynam-
ics of a massive particle evolving in free space, which
also displays a quadratic dispersion relation (see the
Supplemental Material of [24]). The chirped electromag-
netic pulses can be produced by driving the waveguide at a
given spatial position, say at z ¼ 0. In the Supplemental
Material of this Letter [25], we provide two detailed
examples of how the chirped pulses Eðz; tÞ can be
engineered in a 3D hollow waveguide with perfectly
conducting walls [26], a relevant system for circuit quan-
tum electrodynamics [31,32], and in a multilayer photonic
crystal.
Let us now address the interaction between the self-

compressing chirped pulse Eðz; tÞ and a single quantum
emitter placed at the position ðx0; y0; dÞ. The quantum
emitter is first modeled as a qubit with electronic levels
fjgi; jeig and transition frequency ωq. Its electric-dipole
moment is assumed to point along the direction of the
component of the electric field considered in Eðz; tÞ.
Accordingly, the Hamiltonian describing the electric-dipole
interaction of the qubit with the electromagnetic pulse is
given by

Ĥ
ℏ
¼ ωq

2
σ̂z þ

Ωðd; tÞ
2

σ̂þ þ Ω�ðd; tÞ
2

σ̂−; ð6Þ

where Ωðd; tÞ≡ −2degEðd; tÞ=ℏ is the time- and position-
dependent Rabi coupling strength, deg is the dipole
matrix element of the qubit, and ℏ is the reduced Planck
constant. We use the Pauli matrix operators for the qubit
levels σ̂z ≡ jeihej − jgihgj and σ̂þ ≡ ½σ̂−�† ¼ jeihgj.
The dynamics of the state of the qubit ρ̂ðtÞ including
spontaneous emission with rate Γ are modeled with
the Born-Markov master equation ∂tρ̂ ¼ ðiℏÞ−1½Ĥ; ρ̂�þ
Γðσ̂−ρ̂σ̂þ − ½σ̂þσ̂−; ρ̂�þ=2Þ, which can be numerically
solved. We remark that the rotating wave approximation,
namely, using Ωðd; tÞ≡ −2degEþðd; tÞ=ℏ in Eq. (6),
can be employed in the regime Ω0 ≪ 2ωq where
Ω0 ≡maxd;t jΩðd; tÞj.
Let us analyze the dynamics of a qubit situated at

position z ¼ d and which is initially in the ground state
ρ̂ð0Þ ¼ jgihgj. Figure 2(a) shows the excited state proba-
bility peðd; tÞ ¼ tr½ρ̂ðtÞjeihej� as a function of time for
different positions d of the qubit. When the qubit is situated
at the compression distance (d ¼ df), the qubit is excited
when the pulse reaches it at t ¼ tf and deexcited when it
travels further away. Hence, peðdf; t ≫ tfÞ ≈ 0. However,
when the qubit is situated far from the compression
distance (jd − dfj ≫ σf), it remains excited at long
times peðd ≠ df; t ≫ tfÞ ≈ 1. The interaction of the qubit
with the pulse happens at a timescale shorter than Γ−1

assuming usual spontaneous emission rates Γ=ωq ≲ 10−4.
Figure 2(b) shows the ground state population of the qubit
pgðd; tÞ ¼ tr½ρ̂ðtÞjgihgj� as a function of the position d of
the qubit, at a time τðdÞ, such that tf ≪ τðdÞ ≪ Γ−1, that is,
after the interaction with the pulse but before the decay of
the qubit. As shown in the Supplemental Material [25],
Fig. 2(b) does not depend on Γ in the regime Γ=ωq ≲ 10−5.
The plot shows different curves for different values of df
and σf. The ground-state population features a peak of
height one centered at the compression distance of the pulse
d ¼ df that is narrower the smaller the value of σf. The
peak manifests that the self-compressing chirped pulse
prepares a position-dependent state with a spatial resolution
σq (the width of the probability peak) that, as further
discussed below, is given by σq=σf ≈ 1.34 and thus can be
smaller than λq ≡ 2πc=ωq. Hence, the proposed self-
compressing chirped pulses can be used to perform remote
subwavelength addressing of quantum emitters with a
resolution length scale given by σq ∝ σf.
The dynamics shown in Fig. 2 can be understood in the

context of Landau-Zener (LZ) processes [33,34]. To this
end, we consider the Hamiltonian (6) in the rotating wave
approximation and write Ωðd; tÞ≡ gðd; tÞ exp½iφðd; tÞ�,

FIG. 2. (a) Excited state population of a qubit of frequency
ωq ¼ ω0 as a function of time for different positions of the
qubit. We choose ω0=ωc ¼ 1.005, Γ=ω0 ¼ 10−6, df=λ0 ¼ 18,
σf=λ0 ¼ 0.35, Ω0=ωc ¼ 0.038, and ϕ ¼ 0. (b) Ground-state
population of the qubit as a function of the on-axis distance d
from the origin, for different values of df and σf (see inset) and at
a time τðdÞ ¼ 2tf þ ηd=v (see main text). For (b) we fix
ω0=ωc ¼ 1.005 and Ω0=ωc ¼ 0.038 (Ω0=ωc ¼ 0.030) for the
curves with σf=λ0 ¼ 0.35 (σf=λ0 ¼ 0.5).
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where both functions gðd; tÞ and φðd; tÞ are
real and depend on the amplitude and phase of the
electromagnetic pulse, respectively. One then moves
to a rotating frame given by the unitary transforma-
tion ÛðtÞ ¼ exp½−iφðd; tÞσ̂z=2�, which converts the
Hamiltonian (6) into

ĤLZ

ℏ
¼

�
ω0

2
þ Δðd; tÞ

�
σ̂z þ

gðd; tÞ
2

ðσ̂þ þ σ̂−Þ; ð7Þ

where Δðd; tÞ≡ ∂tφðd; tÞ=2 for ωq ¼ ω0. In Eq. (7), the
qubit detuning Δðd; tÞ (Rabi coupling gðd; tÞ) is time-
dependent due to the chirping (time-dependent amplitude)
of the electromagnetic pulse. The results shown in Fig. 2
can be explained in the dressed-state picture of Eq. (7). As
further illustrated in [25], within the time interval at which
the coupling g > 0 and hence an energy gap opens between
the dressed energies, the detuning Δ undergoes a single
change (two changes) of sign whenever the qubit is out of
focus jd − dfj ≫ σf (on focus jd − dfj ≪ σf). In both
regimes, the process is adiabatic. Consequently, the out-
of-focus qubit goes forth in the lower dressed-energy
branch. Hence, after the pulse has passed and the energy
gap closes (g ¼ 0), the qubit ends up in the excited state.
However, in the case when the qubit is on focus, it goes
forth and back in the lower dressed-energy branch, thus
ending in the ground state. For distances in the crossover
regime jd − dfj ≈ σf the process includes nonadiabatic
transitions as the gap closes while the detuning changes
sign. By comparing the timescales at which Δ changes sign
and at which the gap opens due to the coupling g, we can
estimate and numerically verify that the width of the
peak in Fig. 2(b) is given by the above-quoted value of
σq=σf ≈ 1.34 [25].
Our results also hold for more complex quantum

emitters, such as the nonlinear harmonic oscillator that
models a transmon qubit [35]. The Hamiltonian describing
the interaction of the quantum emitter with the chirped
electromagnetic field pulse is now given by

Ĥ
ℏ
¼ωqb̂

†b̂þα

2
½ðb̂†b̂Þ2− b̂†b̂�þΩðd;tÞ

2
b̂†þΩ�ðd;tÞ

2
b̂; ð8Þ

where b̂ (b̂†) is a bosonic annihilation (creation) operator,
α is the anharmonicity coefficient, and Ωðd; tÞ ¼
−2dqEðd; tÞ=ℏ, where dq is the dipole moment of the
anharmonic quantum emitter. One can then numeri-
cally solve the Born-Markov master equation ∂tρ̂ ¼
ðiℏÞ−1½Ĥ; ρ̂� þ Γðb̂ ρ̂ b̂† − ½b̂†b̂; ρ̂�þ=2Þ in a truncated suf-
ficiently large Hilbert space. We assume the initial state is
ρ̂ð0Þ ¼ j0ih0j, where b̂†b̂jni ¼ njniwith n ¼ 0; 1; 2;…. In
Fig. 3 we plot the excitation probability of the state jni,
namely, pnðt; dÞ≡ hnjρ̂ðtÞjni, as a function of d. The
population of the ground state features a peak around
the compression position of the pulse, analogously to the

two-level quantum emitter. Note that the asymmetry of the
electromagnetic pulse before and after the compression
distance is imprinted in the excited states of the anharmonic
quantum oscillator.
So far, we have analyzed the interaction of chirped

electromagnetic pulses with a single quantum emitter as a
function of its position in the waveguide. As shown in [25],
our results hold in the case of an ensemble of many
quantum emitters, as illustrated in Fig. 1(a), in the regime
where the number of photons in the electromagnetic pulse
is much larger than the number of quantum emitters and the
single-photon coupling rate is weak. In this regime, both
the interactions between quantum emitters and their back-
action on the electromagnetic pulse, i.e., the total field
scattered by the emitters can be neglected. According to our
conservative estimation in [25], our results should hold for
an ensemble of at least ≈10 qubits for the parameters used
in Figs. 2 and 3. The regime of few-photon pulses [36–38]
or strongly coupled quantum emitters, which is notably
challenging to approach theoretically due to interesting
emerging quantum phenomena [39–42] is, in our opinion, a
very interesting direction for further research.
Our results are relevant in many platforms where other

options such as transverse driving are difficult (e.g.,
photonic crystals surrounded by a band-gapped medium),
harmful (e.g., photodamage in hybrid metal-dielectric
waveguides), incapable of individual addressing (e.g.,
closely packed qubit ensembles), or the source of unwanted
decoherence (e.g., in superconducting circuits). The self-
compressing behavior described in this Letter only relies on
free propagation in a quadratic dispersion relation and is
thus not specific to the electromagnetic field. An interesting
outlook of our work is to explore similar self-compressing
dynamics in other systems with quadratic spectrum,
collective quasiparticles such as bulk plasmons [43] or

FIG. 3. Population of the internal states of an oscillator with
anharmonicity α=ωq ¼ −0.05 interacting with the pulse as a
function of the distance d to the center of the waveguide, at
a time τðdÞ ¼ 2tf þ ηd=v, such that tf ≪ τðdÞ ≪ Γ−1 with
Γ=ωq ¼ 10−6. Parameters used: ωq=ωc ¼ ω0=ωc ¼ 1.005,
df=λ0 ¼ 18, σf=λ0 ¼ 0.35, Ω0=ωc ¼ 0.038, ϕ ¼ 0.
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exciton polaritons [44,45], and even quantum technological
platforms such as cavity arrays [46] and atoms in optical
lattices [47]. By providing new probing and controlling
capabilities at the quantum level, self-compressing pulses
could thus become a relevant asset for quantum technol-
ogies in the future.
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