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Flat bands play an important role in diffraction-free photonics and attract fundamental interest in many-
body physics. Here we report the engineering of flat-band localization of collective excited states of atoms
in Creutz superradiance lattices with tunable synthetic gauge fields. Magnitudes and phases of the lattice
hopping coefficients can be independently tuned to control the state components of the flat band and the
Aharonov-Bohm phases. We can selectively excite the flat band and control the flat-band localization with
the synthetic gauge field. Our study provides a room-temperature platform for flat bands of atoms and holds
promising applications in exploring correlated topological materials.
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Flat bands are characterized by the zero bandwidth over
the whole Brillouin zone. Owing to the destructive inter-
ference between the hopping pathways [1,2], the group
velocity of excitations vanishes, and hence the diffusion in
flat bands is inhibited. The resulting compact localized
eigenstates (CLSs) [3,4] have been experimentally realized
in photonics [5–13] and polariton-exciton condensates
[14,15]. Immune to environmental noises, localized states
in flat bands are promising candidates for realizing quan-
tum networks [16] and diffraction-free photonics [17–19].
Flat bands are also of fundamental interest in many-body
physics because of their high degeneracy. The density of
states is divergent such that even weak interactions lead to
strong correlations and exotic topological phases [20–23].
Many-body interactions can be engineered to realize

correlated topological phases in atoms [24,25]. However, in
previous realizations of the flat bands in optical lattices, the
underlying lattices [26,27] are gapless and topologically
trivial. A feasible model that integrates both band flatness
and topology is the two-leg ladder in a uniform magnetic
field with cross-linked couplings, i.e., the Creutz lattice
[28,29] [see Fig. 1(a)]. Despite theoretical proposals in
photonic waveguides [9] and ultracold atoms [21], flat
bands in the Creutz lattice have never been experimentally
realized [30–32].
Here we report the synthesis of a Creutz ladder with

tunable tight-binding parameters in a momentum-space
lattice, i.e., the superradiance lattice [33,34], in room-
temperature cesium atoms. The bipartite ladder consists of
timed Dicke states with different momenta [35]. We find

(a)
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FIG. 1. (a) Schematic configuration of the experiment. The
amplitude envelopes of the two standing waves have a ϕ=2 phase
difference. In the Creutz ladder, the arrows indicate the phase ϕ=2
attached to the transitions. Inset is the configuration of atomic
levels and laser fields. (b) Typical reflection spectrum. The insets
show the configurations of the fields and the lattice responses
when νp is near resonant with either atomic transition. The AB
flux ϕ ¼ π. The power of the probe field is 24 μW. The powers of
each plane wave component of the two standing waves are P1 ¼
29 mW and P2 ¼ 215 mWwith effective Rabi frequencies Ω1 ¼
15 MHz and Ω2 ¼ 68 MHz. The thick dark lines (light filling
areas) are the experimental data (numerical simulation).
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that the corresponding energy band structure exhibits a flat
band and a dispersive band, which are distinguished by
localized and delocalized excitations, respectively. In the
experiment, we excite one site in the ladder with a weak
probe field and measure the optical response of the adjacent
site. The hopping strengths and the Aharonov-Bohm (AB)
phases in the lattice are carefully tuned, which enables us to
excite a particular band and control the flat-band localiza-
tion. We observe that the optical response is significantly
suppressed when the flat band is selectively excited. By
controlling the AB phases, we reveal the relation between
the flat-band localization and gauge fields [36]. Our
work demonstrates a versatile platform for flat bands of
atoms with multiple tunable parameters, which holds
promising applications in exploring correlated topological
phases.
We first introduce the experimental scheme implemented

in the hyperfine levels of the 133Cs D1 line in a bichromatic
standing-wave-coupled configuration in Fig. 1(a). Two
continuous standing-wave fields couple two excited
states jai≡j62P1=2;F¼3i and jbi≡ j62P1=2; F ¼ 4i
to the same metastable state jci≡ j62S1=2; F ¼ 3i. The
frequencies of the two standing-wave coupling fields ν1
and ν2 fulfill the two-photon resonance condition
Δc ¼ ν1 − ωac ¼ ν2 − ωbc, where ωij being the atomic
transition frequency between jii and jji. The envelopes of
the Rabi frequency amplitude of the two standing waves are
2Ω1 cosðkcx − ϕ=4Þ and 2Ω2 cosðkcxþ ϕ=4Þ, where kc is
the x component of the wave vectors and ϕ=2 is the phase
difference. The standing-wave-coupled atoms are probed
with a weak continuous-wave field with the wave vector kp.
The reflection of the probe field reveals the steady-state
response of the atoms. The frequency of the probe field νp
is scanned to couple the ground state jgi≡ j62S1=2; F ¼ 4i
to either jai or jbi. Featured signals can be observed when
the probe field is near resonant with each atomic transition.
A typical spectrum is shown in Fig. 1(b).
In order to show that our experiment constructs a Creutz

ladder and reveal the connection between the reflection
signal and the excitation transport in the ladder, we write
the Hamiltonian H ¼ Hs þHp in momentum space [37],
with Hs and Hp being the parts of the Hamiltonian
involving the standing-wave coupling fields and the probe
field. Here, we set ℏ ¼ 1 and Hs reads

Hs ¼
X

n

½2t1a†nan þ 2t2b
†
nbn

þ ð2t3 cos
ϕ

2
a†nbn þ t3a

†
nbnþ1 þ t3b

†
nanþ1

þ t1e−iϕ=2a
†
nanþ1 þ t2eiϕ=2b

†
nbnþ1 þ H:c:Þ�; ð1Þ

which gives a tight-binding superradiance lattice [33] and
d†j ¼

ffiffiffiffiffiffiffiffiffi
1=N

p P
m jdmihgmj exp½iðkp − 2jkcÞxm� (d ¼ a, b),

where m labels the mth atom at the position xm, j is an

integer, and N is the total number of atoms. Applying d†j to
the ground state of the atoms jGi ¼ jg1g2…gNi, we
obtain the single-photon timed Dicke states [35,40–42].
t1ð2Þ ¼ −Ω2

1ð2Þ=Δc are the hopping amplitudes along each

leg. Here, we can adiabatically eliminate the state jci, since
Δc is much larger than all relevant Rabi frequencies
ðΔc ≫ ΩjÞ. The two hoppings acquire a phase ϕ=2 in
opposite directions. The loop transition along a plaquette
accumulates an AB phase ϕ, such that the lattice is
effectively in a uniform magnetic field. t3 ¼ −Ω1Ω2=Δc
and 2t3 cosϕ=2 are the hopping strengths along the diag-
onals and the rungs of each plaquette. The on-site energies of
ajðbjÞ are 2t1ð2t2Þ, respectively. The relationship between
the current ladder model and previously studied one-
dimensional lattices based on Λ-type electromagnetically
induced transparency configuration [33,34,43] is discussed
in the Supplemental Material [37].
The interaction Hamiltonian due to the probe field is

Hp ¼ ffiffiffiffi
N

p
Ωpe−iΔ

0
pta†0 þ

ffiffiffiffi
N

p
Ω0

pe−iΔptb†0 þ H:c:, where Ωp

(Ω0
p) and Δp ¼ νp − ωbg (Δ0

p ¼ νp − ωag) are the Rabi
frequency and the frequency detuning between the probe
field and the atomic transition between jai (jbi) and jgi.
Hence, Hp shows that the excitation is prepared by the
probe field to the site a0 or b0 in the ladder. When we probe
the site a0 (b0), the phase-matching condition kp − 2kc ≈
−kp is only satisfied for the excitation on the site a1 (b1),
which results in a superradiant backward emission, which
is collected by a photodetector. In the weak probe field
limit, the coherent and collective effects of the
atoms are manifested by the phase-matched unidirectional
radiation of the single-photon superradiant state (a1 or b1)
[35,40–42]. Substantially different from the superfluores-
cence in population inverted systems [44,45], where
atomic coherence is induced by the mutual stimulation,
the coherence between atoms of the single-photon
superradiant state is established by the probe field and
coherently controlled by the standing-wave coupling fields.
Meanwhile, we can also distinguish our signal from
population-inverted superfluorescence by noticing that
the observed line widths (see Fig. 2) are determined by
the energy bands of the superradiance lattice [43]. The
spectrum in the left (right) of Fig. 1(b) characterizes the
excitation transport from a0 to a1 (b0 to b1) in the ladder
of Eq. (1). In the experiment, the probe field is weak
ðΩp ≪ tiÞ such that only a small fraction of the atoms are
excited. In this condition, aj, bj are approximately bosonic
annihilation operators [33].
We diagonalize Hs in real space [37] and the band

structures are shown in Fig. 2. We define η≡ t2=t1 as the
relative hopping strength along the two legs. All three band
structures in Fig. 2(a)–2(c) with different η are composed of
a flat and a dispersive band. In general, the dynamics of the
excitation is governed by both bands and cannot be
distinguished. Probing only one band by controlling the
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excitation energy [46–48] is inapplicable since the band
gap closes when ϕ approaches zero [37].
Nevertheless, the tunability of the hopping strengths

enables us to determine which band to excite by controlling
the state component of the bands. In the experiment, we
tune η, which is proportional to P2=P1, where P1 and P2

are the powers of each plane wave component of the two
standing waves. An interesting correlation can be
noticed between the parameter η and the band components,
where the color represents the polarization hσzi≡
hjaihaj − jbihbji of the eigenstates. In particular, hσzi ¼
þ1 or −1 means the band fully locates on the a or b leg. In
Fig. 2(a), we see that hσzi ≈ −1 for almost the whole
dispersive band, meaning that the dispersive band supports
a large excitation component on the b leg for η ≫ 1 (we
take η ¼ 20.7 according to the experiments). Therefore, the
b0 → b1 transport is governed by the dispersive band. On
the other hand, for η ≪ 1 [η ¼ 1=20.7 in Fig. 2(c)], hσzi ≈
−1 for almost the entire flat band, so the b0 → b1 transport
dynamics is governed by the flat band.
This band selection is manifested in the bandwidths, the

central frequencies, and the magnitudes of the reflection
spectra in Fig. 2. In the experiment, we change η and keep
t3 ∝

ffiffiffiffiffiffiffiffiffiffiffi
P1P2

p
a constant. In Fig. 2(a) for η ≫ 1, the

reflection spectrum of the dispersive band has a larger
bandwidth and a lower central frequency. As a comparison,

in Fig. 2(c) for η ≪ 1, the reflection spectrum due to the flat
band has a much narrower bandwidth and the peak locates
near the predicted frequency of the flat band. The locali-
zation in the flat band is demonstrated by the decrease of
the reflection peak when we decrease η, during which the
reflection is more contributed by the flat band. As a side
note, in obtaining Fig. 2(c), we use the symmetry that
lattice Hamiltonian Hs is invariant when we exchange the
sublattices a and b, inverse η, and flip the flux ϕ [37].
The reflection spectrum is mostly contributed by the

slowly moving atoms that have Doppler shifts smaller than
the lattice bandwidth [43]. We take the average of reflec-
tivity over the bands R̄ ¼ R

Rdνp=
R
dνp to investigate the

localization and its ϕ dependence. In Fig. 3(a), the flat-
band localization is demonstrated by the suppression of R̄
when η decreases. Furthermore, we notice that the ϕ
dependence of R̄ changes with η. The sinusoidal curve
of averaged reflectivity R̄ηðϕÞ is shifted from top to bottom
in Fig. 3(a).

(a)

(b)

(c)

FIG. 2. Band structures (left) and the corresponding reflection
spectra (right) with (a) η ¼ 20.7, (b) η ¼ 3.8, and (c) η ¼ 1=20.7.
The reflection spectrum is mainly contributed by the dispersive
(flat) band for η ≫ 1 (η ≪ 1). The data in (c) is obtained by
measuring the a-leg response owing to the symmetry of the
Hamiltonian (see the text).

ffiffiffiffiffiffiffiffiffiffiffi
P1P2

p
≈ 78 mW is kept as a constant

and other parameters are the same as in Fig. 1(b). Dotted gray
lines mark the energy of the flat band. The thick dark lines (light
filling areas) are the experimental data (numerical simulation).
The spectra are fitted with Lorentzian functions (orange dashed
lines) with FWHM ¼ 32.4, 15.7, and 13.7 MHz and peaks at
−29.2, −13.6, and −4.0 MHz from top to bottom.

(a)

(c)

(b)

FIG. 3. Response of the dispersive and flat bands with different
gauge fields. (a) The averaged reflectivity R̄ versus ϕ with
different η. (b) The normalized probability on the site b1 versus ϕ.
The diamonds (squares) indicate where the curves reach their
maxima (minima). ΔpðΔ0

pÞ ¼ −2 MHz and Δc ¼ 233.5 MHz.
The gray dashed lines are plotted to guide the extrema of the
curves. (c) The probability distribution of the steady state jψsi
on the b leg with ϕ1 ¼ 0.64π, η ¼ 20.7 (blue diamonds),
ϕ2 ¼ 1.62π, η ¼ 20.7 (yellow squares), ϕ3 ¼ 0.9π, η ¼ 1=20.7
(red diamonds), and ϕ4 ¼ 1.86π, η ¼ 1=20.7 (green squares).
The powers of each plane wave component of the two standing
waves are P1 ¼ 67 mW, P2 ¼ 90 mW for η ¼ 3.8 and 1=3.8;
P1 ¼ 40 mW, P2 ¼ 153 mW for η ¼ 10.6 and 1=10.6; and
P1 ¼ 29 mW, P2 ¼ 215 mW for η ¼ 20.7 and 1=20.7. Other
experimental parameters are the same as in Fig. 1. The points are
simply connected for clarity. Error bars are obtained from four
independent data sets.
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The ϕ-dependent shift shows the distinct responses to
the gauge fields of the two bands. If the excitation is
completely prepared in the dispersive band, the transport
dynamics is determined by the flux-dependent unidirec-
tional chiral edge current [43,49–53] of the dispersive
band. The unidirectional chiral current breaks the sym-
metry between the transitions from b0 to b1ð−1Þ. When the
magnetic flux ϕ ∈ ð0; πÞ, the chiral current enhances the
probability in b1, and hence the reflectivity increases (vice
versa). On the other hand, flat-band response to the gauge
field can be understood by the CLSs jFji [3]. When ϕ ¼
2nπ (n is an integer), jFji ∝ ðηa†j − b†jÞjGi is localized
within the jth unit cell. Therefore, only jF0i is excited when
we probe the site b0, leading to the maximum localization.
Otherwise, jFji∝ðηa†jþ1−eiϕ=2b

†
jþ1þηeiϕ=2a†j−b

†
jÞjGi is

localized within two unit cells. Probing site b0 leads to a
coherent superposition between jF0i and jF−1i, and hence
results in a finite overlap with b�1 [9,10].
The two responses can be further investigated by

the steady state of the collective excited states of atoms,
where the wave function jψ si ≈ ½1þP

jðαja†j þ βjb
†
jÞ�jGi

ðαj; βj ≪ 1Þ in the weak excitation approximation.
In the steady state, we obtain the probability amplitude
βj ¼

ffiffiffiffi
N

p
ΩphGjbjðΔp þ iγ̂ −HsÞ−1b†0jGi [54], where γ̂ ¼P

jðγaa†jaj þ γbb
†
jbjÞ and γa (γb) is the decoherence rate

between the excited state jai (jbi) and jgi. Since the
reflectivity is approximately proportional to the jβ1=β0j2
[55], we plot jβ1=β0j2 in Fig. 3(b) to demonstrate both
features of the R̄ in Fig. 3(a), including the magnitude
suppression and the ϕ dependence. We also plot four
typical probability amplitude distributions along the b leg
in Fig. 3(c). For η ¼ 20.7, the distributions of jβjj2 with
ϕ1 ¼ 0.64π and ϕ2 ¼ 1.62π are almost symmetric to each
other with respect to the 0th site, implying flux-dependent
unidirectional chiral edge currents of the dispersive band.
However, the distributions with ϕ3 ¼ 0.9π and ϕ4 ¼ 1.86π
are symmetrically localized at b0 with different localization
lengths. jβ1=β0j2 for η ¼ 1=20.7 is minimized at ϕ4, which
means that the eigenstates are maximally localized when
the synthetic gauge field almost vanishes. We notice that ϕ4

is slightly different from 2nπ, which comes from the
suppressed but finite contribution from the dispersive band.
In Fig. 4(b), the different ϕ dependences of the dispersive

and flat bands are illustrated with Lissajous curves. The
spatial phase difference between the envelopes of the two
standing waves is slowly tuned to cover all values of ϕ. We
obtain the data sets fR̄ηðϕÞ; R̄1=ηð−ϕÞg and fit them with
ellipses to reconstruct the Lissajous curves. The shape of
the ellipse elucidates the phase differences between the two
underlying functions. For example, a Lissajous curve
composed of two parametric equations with argument u,
e.g., x ¼ sinðuÞ and y ¼ sinð−uþ φÞ, is a line (circle)
when φ ¼ 0 (π=2). In Fig. 4(a), φ obtained by fitting the

Lissajous curve approaches π=2 when η increases, indicat-
ing the different types of the excitations on the flat and
dispersive bands. In Fig. 4(c), we notice that kR̄kη increases
with η monotonically, where k � � � k stands for the mean
value of the averaged reflectivity R̄ over all ϕ. The
numerical simulation agrees with the data.
In conclusion, we experimentally realize Creatz ladders

with tunable gauge fields, where the flat band can be
selectively excited and the interplay between the flat-band
localization and the AB phases is investigated. We study
the flat-band localization in an open system, where the
steady state balanced by pumping, driving, and dissipation
exhibits the dynamics in the corresponding closed system
[54]. We also need to emphasize that our scheme is
substantially different from the incoherently pumped
polariton-exciton condenstates [14,15,56–58], where
coherence is not accessible between multiple CLSs. It
is interesting to notice that both bands of the Creutz ladder
are topologically nontrivial [10,31,59,60] provided that
ϕ ≠ 2nπ [37]. It is a step towards the simulation of the
strong correlated quantum phases [20,21,61–63]. An
interaction term between the sites in momentum space
can be introduced by weakly coupling the excited atomic
level to a Rydberg state [25] or by s-wave interactions

(a)

(b)

(c)

FIG. 4. Gauge field dependence of the reflectivities from the
dispersive band and flat band. (a) The phase difference φ between
the ϕ dependences of R̄η and R̄1=η. (b) The Lissajous curves
composed of R̄ηðϕÞ and R̄1=ηð−ϕÞ. The phase difference between
R̄η and R̄1=η increases and approaches π=2 when η increases. The
yellow dots are experimental data and the green lines are fitted
elliptic curves. The powers of each plane wave component of the
two standing waves are P1 ¼ 50 mW, P2 ¼ 124 mW for η ¼ 6.8
and 1=6.8; P1 ¼ 33 mW, P2 ¼ 183 mW for η ¼ 15.2 and
1=15.2. Other experimental parameters are the same as in Fig. 3.
Each plot contains 400 data points. (c) The mean averaged
reflectivity kR̄kη versus η. kR̄kη increases with η monotonically.
The dotted lines are the simulated results.
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[39]. With a negative Δc, the flat band has the lowest
energy and can be used to study the many-body ground
states of ultracold atoms [25,37].

We acknowledge the support from the National Natural
Science Foundation of China (Grants No. 11934011,
No. 11874322, No. 91736209, and No. U1330203), the
National Key Research and Development Program of China
(Grants No. 2019YFA0308100 and No. 2018YFA0307200),
Zhejiang Province Key Research and Development Program
(Grant No. 2020C01019) and the Fundamental Research
Funds for the Central Universities. Y. L. was supported by
National Natural Science Foundation of China (Grants No.
12074431 and No. 11774428) and L. Y. was supported by
Natural Science Foundation of Shanghai (19ZR1475700).

*These authors contributed equally to this work
†hancai@zju.edu.cn
‡junxiang_zhang@zju.edu.cn

[1] B. Sutherland, Localization of electronic wave functions
due to local topology, Phys. Rev. B 34, 5208 (1986).

[2] D. L. Bergman, C. Wu, and L. Balents, Band touching from
real-space topology in frustrated hopping models, Phys.
Rev. B 78, 125104 (2008).

[3] S. Flach, D. Leykam, J. D. Bodyfelt, P. Matthies, and A. S.
Desyatnikov, Detangling flat bands into Fano lattices,
Europhys. Lett. 105, 30001 (2014).

[4] D. Leykam, A. Andreanov, and S. Flach, Artificial flat band
systems: From lattice models to experiments, Adv. Phy. X 3,
1473052 (2018).

[5] R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B.
Real, C. Mejía-Cortés, S. Weimann, A. Szameit, and M. I.
Molina, Observation of Localized States in Lieb Photonic
Lattices, Phys. Rev. Lett. 114, 245503 (2015).

[6] S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P.
Öhberg, E. Andersson, and R. R. Thomson, Observation of
a Localized Flat-Band State in a Photonic Lieb Lattice,
Phys. Rev. Lett. 114, 245504 (2015).

[7] S. Mukherjee and R. R. Thomson, Observation of localized
flat-band modes in a quasi-one-dimensional photonic rhom-
bic lattice, Opt. Lett. 40, 5443 (2015).

[8] S. Mukherjee and R. R. Thomson, Observation of robust
flat-band localization in driven photonic rhombic lattices,
Opt. Lett. 42, 2243 (2017).

[9] S. Mukherjee, M. D. Liberto, P. Öhberg, R. R. Thomson,
and N. Goldman, Experimental Observation of Aharonov-
Bohm Cages in Photonic Lattices, Phys. Rev. Lett. 121,
075502 (2018).

[10] M. Kremer, I. Petrides, E. Meyer, M. Heinrich, O. Zilber-
berg, and A. Szameit, A square-root topological insulator
with non-quantized indices realized with photonic Ahar-
onov-Bohm cages, Nat. Commum. 11, 1808 (2020).

[11] S. Xia, Y. Hu, D. Song, Y. Zong, L. Tang, and Z. Chen,
Demonstration of flat-band image transmission in optically
induced Lieb photonic lattices, Opt. Lett. 41, 1435 (2016).

[12] S. Xia, D. Li, X. Liu, L. Tang, Y. Hu, D. Song, J. Xu, D.
Leykam, S. Flach, and Z. Chen, Unconventional Flatband

Line States in Photonic Lieb Lattices, Phys. Rev. Lett. 121,
263902 (2018).

[13] J. Ma, J. W. Rhim, L. Tang, S. Xia, H. Wang, X. Zheng, S.
Xia, D. Song, Y. Hu, Y. Li, B. J. Yang, D. Leykam, and Z.
Chen, Direct Observation of Flatband Loop States Arising
from Nontrivial Real-Space Topology, Phys. Rev. Lett. 124,
183901 (2020).

[14] F. Baboux, L. Ge, T. Jacqmin, M. Biondi, E. Galopin, A.
Lemaître, L. Le Gratiet, I. Sagnes, S. Schmidt, H. E. Türeci,
A. Amo, and J. Bloch, Bosonic Condensation and Disorder-
Induced Localization in a Flat Band, Phys. Rev. Lett. 116,
066402 (2016).

[15] T. H. Harder, O. A. Egorov, J. Beierlein, P. Gagel, J. Michl,
M. Emmerling, C. Schneider, U. Peschel, S. Höfling, and S.
Klembt, Exciton-polaritons in flatland: Controlling flatband
properties in a Lieb lattice, Phys. Rev. B 102, 121302(R)
(2020).

[16] M. Röntgen, C. Morfonios, I. Brouzos, F. Diakonos, and P.
Schmelcher, Quantum Network Transfer and Storage with
Compact Localized States Induced by Local Symmetries,
Phys. Rev. Lett. 123, 080504 (2019).

[17] S. Rojas-Rojas, L. Morales-Inostroza, R. A. Vicencio, and
A. Delgado, Quantum localized states in photonic flat-band
lattices, Phys. Rev. A 96, 043803 (2017).

[18] R. A. Vicencio and C. Mejía-Cortés, Diffraction-free image
transmission in kagome photonic lattices, J. Opt. 16, 015706
(2013).

[19] D. Yu, L. Yuan, and X. Chen, Isolated photonic flatband
with the effective magnetic flux in a synthetic space
including the frequency dimension, Laser Photonics Rev.
14, 2000041 (2020).

[20] E. J. Bergholtz and Z. Liu, Topological flat band models and
fractional Chern insulators, Int. J. Mod. Phys. B 27,
1330017 (2013).

[21] J. Jünemann, A. Piga, S. J. Ran, M. Lewenstein, M. Rizzi,
and A. Bermúdez, Exploring Interacting Topological Insula-
tors with Ultracold Atoms: The Synthetic Creutz-Hubbard
Model, Phys. Rev. X 7, 031057 (2017).

[22] E. M. Spanton, A. A. Zibrov, H. Zhou, T. Taniguchi, K.
Watanabe, M. P. Zaletel, and A. F. Young, Observation of
fractional Chern insulators in a van der Waals heterostruc-
ture, Science 360, 62 (2018).

[23] G. Chen, A. L. Sharpe, E. J. Fox, Y. H. Zhang, S. Wang,
L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, Z. Shi,
T. Senthil, D. Goldhaber-Gordon, Y. Zhang, and F.
Wang, Tunable correlated Chern insulator and ferromag-
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