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A direct measurement of the decay width of the excited 0þ1 state of 6Li using the relative self-absorption
technique is reported. Our value of Γγ;0þ

1
→1þ

1
¼ 8.17ð14Þstat:ð11Þsyst. eV provides sufficiently low exper-

imental uncertainties to test modern theories of nuclear forces. The corresponding transition rate is
compared to the results of ab initio calculations based on chiral effective field theory that take into account
contributions to the magnetic dipole operator beyond leading order. This enables a precision test of the
impact of two-body currents that enter at next-to-leading order.

DOI: 10.1103/PhysRevLett.126.102501

Nuclear structure physics has entered an era of precision
studies, both in experiment and theory. For light nuclei,
ab initio theory based on interactions from chiral effective
field theory [1] is reaching an accuracy at which corrections to
electromagnetic (EM) operators that emerge naturally in the
chiral expansion become relevant. A recent review [2]
indicates that precision measurements of EM transition rates
with uncertainties of a few percent or better are required to
explore and validate the effects of these subleading correc-
tions. For few-nucleon systems, direct measurements of strong
transition rates with such precision are often challenging
experimentally owing to the very short lifetimes involved.
The present study is focused on the nucleus 6Li in its

excited 0þ1 state at E0þ
1
¼ 3562.88ð10Þ keV [3], which

constitutes the lightest nonstrange hadronic system [4] with
a dominant internal EM decay branch to its 1þ1 ground state.
The potentially competing parity-forbidden decay via α
emission has not been observed, and it is at least ten million
times weaker than the γ decay [5]. Because of its occur-
rence as stable matter (compared to the lighter hypernuclei
[6]) and the low nucleon number of 6Li, the decay of its 0þ1
state is the EM transition of the simplest hadronic system,
which is simultaneously accessible by precision studies in

theory and experiment. It is, therefore, ideally suited for
testing our understanding of nuclear forces and EM
currents in a many-nucleon system. Moreover, this is the
EM-analog transition to the 6He beta decay, whose rate was
recently measured with high precision [7], so that this
A ¼ 6 system in future offers a comprehensive test of
electroweak interactions in light nuclei.
On the theory side, significant progress has been made in

chiral effective field theory (χEFT) [1,8] and in the ab initio
solution of the quantum many-body problem for light
nuclei [9,10]. Recently, the focus has been on the consistent
inclusion of electroweak transition operators [2], with a
focus on the impact of two-body currents (2BC). For EM
transitions in light nuclei, calculations with traditional 2BC
and potentials were performed in Ref. [11], while calcu-
lations with 2BC from χEFT used in conjunction with wave
functions derived from traditional potentials were per-
formed in Ref. [12], reaching a precision at the few-percent
level. In Ref. [13], this transition and the magnetic moment
of the ground state of 6Li were calculated with interactions
from χEFT without 2BC. Similarly, these observables have
been studied in Refs. [14–16]. In this Letter, we will present
the first calculations obtained with 2BC and consistent
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interactions derived from χEFT. In the case of weak β
decays, this has been shown to lead to a systematic
improvement between experiment and theory [17].
From the experimental side, the determination of

the isovector magnetic dipole transition strength
BðM1; 0þ1;T¼1 → 1þ1;T¼0Þ ∝ E−3

γ Γγ;0þ
1
→1þ

1
between the first

excited 0þ1 state of 6Li with a total isospin quantum number
of T ¼ 1 and the T ¼ 0 ground state, which is proportional
to the product of the level width for γ decay Γγ;0þ

1
→1þ

1
and a

γ-ray energy (Eγ) dependent factor, has been the subject of
considerable effort in the past. The extremely short half-life
of the excited state of about 80 attoseconds (10−18 s) [3]
makes a direct measurement of its decay rate impossible
[18]. Panels (a)–(c) of Fig. 1 show the history of published
values for this quantity as compiled in the Evaluated
Nuclear Structure Data Files (ENSDF) [3]. These values
have been obtained using three different techniques:
nuclear resonance fluorescence (NRF) relative to another
transition (relative NRF) [19,20], self-absorption (SAbs)
[20–25], and inelastic electron scattering ðe; e0Þ [26–30]. In
the ENSDF, a weighted average value of BðM1ÞENSDF ¼
15.65ð32Þ μ2N [from Γγ;0þ

1
→1þ

1
¼ 8.19ð17Þ eV [3,32] ], is

derived from a selection of three of the most recent
publications in Ref. [33]. The selection excludes earlier
measurements with obvious systematic deviations [for
comparison: a weighted average of all measurements yields
a value of BðM1Þ ¼ 14.53þ0.20

−0.30 μ
2
N]. Regardless of the

averaging procedure, the final result is strongly dominated
by two ðe; e0Þ results of Eigenbrod [29] and, in particular, of
Bergstrom et al. [30], that claim the highest precision.
In such an ðe; e0Þ experiment, the BðM1Þ value is obtained

in a model-dependent way from the measured form factor
jFðqÞj2, where q denotes the momentum transfer. Both
works employed the plane-wave Born approximation to
obtain the q-dependent BðM1; qÞ from jFðqÞj2 [34], which
is equal to the BðM1Þ strength in the limit of the minimum
necessary momentum transfer q0 ¼ E0þ

1
=ℏc ≈ 0.018 fm,

the so-called “photon point.” Panel (d) of Fig. 1 shows
BðM1; qÞ values obtained from the form factor of
Bergstrom et al. [30], along with an uncertainty band from
one possible extrapolation in our attempt to reproduce their
results [31]. Similar to Refs. [29] and [30], the present
extrapolations employed fits of low-q expansions of the
model-independent energy dependence of the form factor
with different cutoffs to varying subsets of the low-q data.
In order to match the width of the uncertainty band to the
data point of Bergstrom et al., the selection of fits had
to be limited to a reduced chi-square χ2ν on the order of 0.1.
It was found that the width of this band can easily be
extended by increasing the cutoff or relaxing the restriction
on χ2ν. The obvious presence of systematic uncertainty in
the literature data precludes a comparison to state-of-the art
theoretical results [2,12] and calls for a precision meas-
urement directly at the photon point to avoid the extrapo-
lation uncertainty.
We have, therefore, performed an experiment to measure

Γγ;0þ
1
→1þ

1
with the newly developed NRF-based relative

SAbs method [35,36]. Compared to the traditional SAbs
technique [37] used in several previous experiments
[20–25], it uses a normalization target (no) in combination
with the scattering target of interest (sc) to separate resonant
and nonresonant processes (a detailed derivation of this
equation can be found in the Supplemental Material [31]):

(a) (b) (c) (d) (e) (f)

FIG. 1. (a)–(c) Previous measurements of the BðM1; 1þ1 → 0þ1 Þ strength for 6Li with the methods of relative NRF [19,20] (a), SAbs
[20–25] (b), and ðe; e0Þ [26–30] (c). For each experimental method, the data are sorted by the time of publication, with the most recent
data point on the right. A label next to the data points indicates the year of publication and the last name of the first author. Low-q data of
the most precise ðe; e0Þ result by Bergstrom et al. [30] and a possible quartic polynomial extrapolation (see also the Supplemental
Material [31]) of BðM1; qÞ to the photon point (q0) are shown as an uncertainty band in (d). The present result, which can be interpreted
as a measurement at q0, is given in panel (e). Panel (f) shows the result of four theoretical calculations from the present work (see also
Fig. 3) with estimated uncertainties of the many-body method. They employed different Hamiltonians that are indicated by different
colors and the labels below the data points and include the leading two-body currents.
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Rexp ¼ 1 −
�
Nnrf

no

Nabs
no

�
Nabs

sc

Nnrf
sc

¼ RðΓγ;0þ
1
→1þ

1
; TeffÞ: ð1Þ

In Eq. (1),Nnrf
x denotes the number of observed NRF events

from a γ-ray line from material x. The number of events is
reduced to Nabs

x in a second measurement by the intro-
duction of an absorber target, which consists of the same
material as the scatterer of interest, into the incident
continuous-energy photon beam. The reduction of the
count rate of the NRF line of interest is due to nonresonant
scattering as well as the SAbs induced by the absorber.
Both contributions can be separated in a model-indepen-
dent way by using the reduction of the count rate in the
NRF lines of the normalization target [factor hNnrf

no =Nabs
no i in

Eq. (1)], which is due to nonresonant effects, only. In the
absence of other decay branches, Rexp is directly related to
Γγ;0þ

1
→1þ

1
[37,69] [see Eq. (1)] once the thermal motion of

the nuclei of interest is taken into account. It can be treated
in terms of an effective temperature Teff [37,38,69] that
includes corrections due to condensed-matter effects in the
target material (see below).
The experiment was performed at the Darmstadt High-

Intensity Photon Setup [39], with continuous-energy
photon beams generated by bremsstrahlung processes of
a 7.1(2) MeV electron beam of the Superconducting
Darmstadt Linear Accelerator [40,70] on a copper radiator.
A scattering target composed of 5.033(5) g [particle areal
density dsc;Li ¼ 0.02773ð6Þ b−1, using a target diameter
of 20.00(5) mm] of lithium carbonate (Li2CO3) enriched
to 95.00(1)% in 6Li, sandwiched between pure boron
normalization targets of 2.118(5) g and 2.119(5) g with
a 99.52(1)% 11B enrichment, was measured for about
122 h. A second measurement, 186 h, was carried out
with a 9.938(5) g [dabs;Li ¼ 0.05469ð10Þ b−1] absorber of
the same Li2CO3 material. Scattered γ rays from the target
were detected by three high-purity germanium detectors at
polar angles of 90° (twice) and 130° with respect to the
beam axis. To avoid direct scattering of γ rays from the
absorber target into the detectors, the target was mounted at
the entrance of the 1 m-long collimation system of the
Darmstadt High-Intensity Photon Setup, which acts as a
passive shielding. The direct scattering into the detectors
was found to be negligible by an additional 8 h measure-
ment with the absorber target only. A potential systematic
uncertainty due to small-angle scattering of bremsstrahlung
γ rays inside the collimator, which would then induce
excess NRF reactions in the scatterer, was found to be on
the order of 0.33% by GEANT4 [41–43] simulations (i.e., in
the anticipated order of magnitude of the uncertainty of R)
and taken into account by replacing hNnrf

no =Nabs
no i with

1.0033 × hNnrf
no =Nabs

no i in Eq. (1). The summed spectra of
all three detectors from the measurements with and without
absorber are provided in Fig. 2. Using the known internal
γ-ray transitions of 11B at 2125, 4445, and 5020 keV [44],

the measurement with the absorber was normalized to the
one without it using the energy-dependent factor Nnrf

no =Nabs
no

in Eq. (1). The normalization factor at the three discrete
energies of the 11B transitions were interpolated by a
GEANT4 simulation of the γ-ray attenuation, which was
in turn validated by an off-line measurement with a radio-
active 56Co source. Including the counting statistics and the
correction factor for small-angle scattering and propagating
uncertainties with a Monte Carlo method [45], a value of
Rexp ¼ 0.5192ð20Þ with a relative uncertainty of 0.39%
was obtained.
Li2CO3 was chosen as the target material to reduce

systematic uncertainties because pure lithium, used in all
previous experiments [19–30], is highly hygroscopic,
which may lead to systematic errors in the determination
of the target thickness. The Teff value for Li2CO3 [see
Eq. (1)] was determined from state-of-the-art atomic theory.
First, the phonon density of states of Li2CO3 was obtained
from density functional theory [71,72]. Computations of
this observable are typically in excellent agreement with
experimental data [73,74]. The density functional theory
calculations employed the GPAW [75,76] code in a plane-
wave basis. For the exchange-correlation (xc) potential, the
local-density approximation (LDA) [77] and the general-
ized-gradient approximation (GGA) [78] were tried. These
approximations typically slightly underestimate (LDA) and
overestimate (GGA) the crystal binding. Both xc potentials
reproduced the experimental lattice constants a, b, c, and γ
of Li2CO3 [79] with deviations at the 0.1% level; this can
be viewed as a benchmark test. From the phonon density
of states, a value of Teff ¼ 411ð11Þ K was obtained by

FIG. 2. Summed spectra of the three detectors from the
measurement with (gold) and without (black) the 6Li absorber.
For better visibility, the spectrum with the absorber was shifted by
100 keV to higher energies. The observed NRF events of three
transitions of 11B were used to normalize the spectrum with the
absorber, so that the difference in counts for the 6Li transition is
due to SAbs only. On the right-hand side of the transitions of
interest, the (absolute) value of the SAbs (Rexp) is indicated,
which is expected to be zero for 11B.
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the procedure described in Ref. [38], which represents
the average value and spread of the LDA and GGA
solutions. Using all the aforementioned input [31], our
experimental value for the γ-decay width is Γγ;0þ

1
→1þ

1
¼

8.17þ0.14
−0.13ðstat:Þþ0.10

−0.11ðsyst:Þ eV, which corresponds to a
strength BðM1;0þ→1þÞ¼15.61þ0.27

−0.25ðstat:Þþ0.19
−0.21ðsyst:Þμ2N .

The 68.3% coverage interval (CI) is divided into statistical
(stat.) and systematic (syst.) parts, where the latter accounts
for uncertainties in the target dimensions as well as in
atomic and condensed-matter contributions. (Since both
contributions are uncorrelated and the CIs are almost
symmetric, a symmetrized and quadratically summed
uncertainty of 15.61ð33Þ μ2N is used in all figures.)
For the ab initio calculations, the importance-truncated

no-core shell model (IT-NCSM) [80,81] was employed
as a state-of-the-art many-body method. Within the
IT-NCSM, two-nucleon (NN) and three-nucleon (3N)
interactions derived within χEFT were used. Four different
Hamiltonians (I–IV) were considered, including (I) the
Entem-Machleidt (EM) NN interaction at N3LO [82],
complemented with a local 3N interaction (cutoff
Λ ¼ 500 MeV, cD ¼ 0.8) at N2LO, which is fitted to
reproduce the binding energy as well as the β-decay
half-life of 3H [83,84]. Furthermore, Hamiltonians (II–
IV) use the NN interactions by Entem, Machleidt, and
Nosyk (EMN) at N2LO, N3LO, and N4LO with Λ ¼
500 MeV [8], complemented with consistent nonlocal
3N interactions up to N2LO, N3LO, and N3LO, respec-
tively. The NN interactions were only fitted to NN
scattering data and the deuteron binding energy, while
the 3N interactions were fitted to reproduce the triton
binding energy and to optimize the ground-state energy and
radius of 4He, which led to the values cD ¼ −1, cD ¼ 2,
and cD ¼ 3, for the cases II, III, and IV, respectively.
The similarity renormalization group (SRG) was employed
at the NN and 3N level with a flow parameter of
α ¼ 0.08 fm4 [85,86].
Using an SRG-transformed Hamiltonian requires a

consistent SRG transformation of the M1 operator. In
previous studies [13–16], this consistent treatment was
neglected. Here SRG corrections of the M1 operator were
included at the two-body level. In addition to the SRG
correction, the next-to-leading order (NLO) 2BC contri-
butions to theM1 operator were included as well. At NLO,
these are commonly expressed as a sum of two contribu-
tions: the “intrinsic” term and the “Sachs” term [87]:

μNLO½12� ðR; kÞ ¼ μintrinsic½12� ðkÞ þ μSachs½12� ðR; kÞ ð2Þ
with

μintrinsic½12� ðkÞ ¼ −
i
2
∇q × Jðq; kÞ

���
q¼0

μSachs½12� ðR; kÞ ¼ −
i
2
eðτ1 × τ2ÞzR ×∇kvðkÞ:

Here, τi are the Pauli matrices, q the momentum transfer of
the photon, vðkÞ the one-pion exchange potential in momen-
tum representation, andR the center ofmass coordinate of the
two nucleons. The Sachs term only depends on the potential
between the two nucleons, whereas the translationally
invariant intrinsic term is given by the spatial part of the
two-body current J. For each interaction, an IT-NCSM
calculation was carried out with Nmax from 2 to 12 with
harmonic-oscillator frequencies ℏΩ ¼ 16, 20, 24 MeV. For
the resulting value of themagneticmoment and the transition
strength, the central value for the highest Nmax was used as
the nominal result, and the neighboring results as an estimate
for the many-body uncertainties. The results of the calcu-
lations are listed in Table I and displayed in Fig. 3 [see also
panels (e) and (f) of Fig. 1], where they are compared to the
new experimental constraint of the present work and the
magnetic moment μð1þ1;T¼0Þ ¼ 0.82205667ð26Þ μN [3] of
the ground state of 6Li.
Remarkably, the results of the most complete calcula-

tions, including contributions from the 2BC to the M1
operator, exhibit an excellent agreement with the new
experimental constraints of the present work. This indicates
the importance of 2BC for a correct description of the 6Li
nucleus. The residual differences between experiment and

TABLE I. Results of the theoretical calculations for
BðM1; 0þ1;T¼1 → 1þ1;T¼0Þ and μð1þ1;T¼0Þ of 6Li. These employed
four different Hamiltonians (I–IV), which are introduced in the
text. The calculations are sorted by the type of M1 operator, with
the same abbreviations as in Fig. 3. For comparison, the results of
QMC calculations in Refs. [11,12] are shown in the second part
of the table. The “standard nuclear physics approach” (SNPA) for
the operator in Ref. [11] was complemented by a χEFT approach
in Ref. [12], while in both cases phenomenological potentials
were used. “LO” refers to one-body currents and “Total” to the
inclusion of two-body currents.

I II III IV

LO
μ (μN) 0.8399(22) 0.8374(24) 0.8344(21) 0.8388(18)
BðM1Þ (μ2N) 15.02(10) 14.92(13) 14.68(10) 14.81(10)

LO SRG ev.
μ (μN) 0.8221(28) 0.8195(29) 0.8188(26) 0.8236(23)
BðM1Þ (μ2N) 14.44(8) 14.36(11) 14.13(8) 14.32(8)

NLO SRG ev.
μ (μN) 0.8240(34) 0.8216(34) 0.8217(32) 0.8261(28)
BðM1Þ (μ2N) 15.74(12) 15.48(15) 15.15(13) 15.32(13)

[11] [12]
QMC LO

SNPA SNPA χEFT
μ (μN) 0.810(1) 0.817(1) 0.817(1)
BðM1Þ (μ2N) 12.84(11) … 13.18(4)

QMC Total
μ (μN) 0.800(1) 0.807(1) 0.837(1)
BðM1Þ (μ2N) 15.00(11) … 16.07(6)
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theory are probably related to missing higher-order con-
tributions to the M1 operator. The increase of the BðM1Þ
strength is also found in quantum Monte Carlo (QMC)
calculations when 2BC are included [11,12] (see also
Table I).
In contrast to the data points that presently dominate the

world average, this measurement was performed directly at
the photon point and with controlled systematic uncertain-
ties. In total, a relative uncertainty of 2% with balanced
contributions by statistics and systematics was achieved.
This translates into an uncertainty of about 2 attoseconds
for the half-life of the 0þ1 state of 6Li. In addition, χEFT
nuclear structure calculations were performed that take into
account 2BC at NLO, combined with chiral interactions at
various orders, for the first time. Excellent agreement
between experiment and theory was found at a new level
of precision in both areas.
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