Role of Chiral Two-Body Currents in ⁶Li Magnetic Properties in Light of a New Precision Measurement with the Relative Self-Absorption Technique

U. Friman-Gayer,^{1,2,3,*} C. Romig,^{1,†} T. Hüther,¹ K. Albe,⁴ S. Bacca,^{5,6} T. Beck,¹ M. Berger,¹ J. Birkhan,¹ K. Hebeler,^{1,7} O. J. Hernandez,^{8,5} J. Isaak,¹ S. König,^{1,7,9} N. Pietralla,¹ P. C. Ries,¹ J. Rohrer,⁴ R. Roth,¹ D. Savran,¹⁰ M. Scheck,^{1,11,12} A. Schwenk,^{1,7,13} R. Seutin,^{13,1,7} and V. Werner,¹

¹Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

²Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA

Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina 27708, USA

⁴Institut für Materialwissenschaft, Technische Universität Darmstadt, 64287 Darmstadt, Germany

⁵Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany

⁶Helmholtz Institute Mainz, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64289 Darmstadt, Germany

⁷ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64289 Darmstadt, Germany

⁸Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada

⁹Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA

⁰GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64289 Darmstadt, Germany

¹¹School of Engineering, University of the West of Scotland, Paisley, PA1 2BE, United Kingdom

²SUPA, Scottish Universities Physics Alliance, Glasgow, G12 8QQ, United Kingdom

¹³Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany

(Received 15 May 2020; revised 8 January 2021; accepted 22 January 2021; published 12 March 2021)

A direct measurement of the decay width of the excited 0_1^+ state of ⁶Li using the relative self-absorption technique is reported. Our value of $\Gamma_{\gamma,0_1^+ \to 1_1^+} = 8.17(14)_{\text{stat.}}(11)_{\text{syst.}}$ eV provides sufficiently low experimental uncertainties to test modern theories of nuclear forces. The corresponding transition rate is compared to the results of ab initio calculations based on chiral effective field theory that take into account contributions to the magnetic dipole operator beyond leading order. This enables a precision test of the impact of two-body currents that enter at next-to-leading order.

DOI: 10.1103/PhysRevLett.126.102501

Nuclear structure physics has entered an era of precision studies, both in experiment and theory. For light nuclei, ab initio theory based on interactions from chiral effective field theory [1] is reaching an accuracy at which corrections to electromagnetic (EM) operators that emerge naturally in the chiral expansion become relevant. A recent review [2] indicates that precision measurements of EM transition rates with uncertainties of a few percent or better are required to explore and validate the effects of these subleading corrections. For few-nucleon systems, direct measurements of strong transition rates with such precision are often challenging experimentally owing to the very short lifetimes involved.

The present study is focused on the nucleus ⁶Li in its excited 0_1^+ state at $E_{0_1^+} = 3562.88(10)$ keV [3], which constitutes the lightest nonstrange hadronic system [4] with a dominant internal EM decay branch to its 1^+_1 ground state. The potentially competing parity-forbidden decay via α emission has not been observed, and it is at least ten million times weaker than the γ decay [5]. Because of its occurrence as stable matter (compared to the lighter hypernuclei [6]) and the low nucleon number of ⁶Li, the decay of its 0_1^+ state is the EM transition of the simplest hadronic system, which is simultaneously accessible by precision studies in theory and experiment. It is, therefore, ideally suited for testing our understanding of nuclear forces and EM currents in a many-nucleon system. Moreover, this is the EM-analog transition to the ⁶He beta decay, whose rate was recently measured with high precision [7], so that this A = 6 system in future offers a comprehensive test of electroweak interactions in light nuclei.

On the theory side, significant progress has been made in chiral effective field theory (χ EFT) [1,8] and in the *ab initio* solution of the quantum many-body problem for light nuclei [9,10]. Recently, the focus has been on the consistent inclusion of electroweak transition operators [2], with a focus on the impact of two-body currents (2BC). For EM transitions in light nuclei, calculations with traditional 2BC and potentials were performed in Ref. [11], while calculations with 2BC from χ EFT used in conjunction with wave functions derived from traditional potentials were performed in Ref. [12], reaching a precision at the few-percent level. In Ref. [13], this transition and the magnetic moment of the ground state of ⁶Li were calculated with interactions from χ EFT without 2BC. Similarly, these observables have been studied in Refs. [14–16]. In this Letter, we will present the first calculations obtained with 2BC and consistent

0031-9007/21/126(10)/102501(8)

FIG. 1. (a)–(c) Previous measurements of the B(M1; $1_1^+ \rightarrow 0_1^+$) strength for ⁶Li with the methods of relative NRF [19,20] (a), SAbs [20–25] (b), and (e, e') [26–30] (c). For each experimental method, the data are sorted by the time of publication, with the most recent data point on the right. A label next to the data points indicates the year of publication and the last name of the first author. Low-q data of the most precise (e, e') result by Bergstrom et al. [30] and a possible quartic polynomial extrapolation (see also the Supplemental Material [31]) of B(M1, q) to the photon point (q_0) are shown as an uncertainty band in (d). The present result, which can be interpreted as a measurement at q_0 , is given in panel (e). Panel (f) shows the result of four theoretical calculations from the present work (see also Fig. 3) with estimated uncertainties of the many-body method. They employed different Hamiltonians that are indicated by different colors and the labels below the data points and include the leading two-body currents.

interactions derived from χ EFT. In the case of weak β decays, this has been shown to lead to a systematic improvement between experiment and theory [17].

From the experimental side, the determination of the isovector magnetic dipole transition strength $B(M1; 0^+_{1,T=1} \rightarrow 1^+_{1,T=0}) \propto E_{\gamma}^{-3} \Gamma_{\gamma,0^+_1 \rightarrow 1^+_1}$ between the first excited 0_1^+ state of ⁶Li with a total isospin quantum number of T = 1 and the T = 0 ground state, which is proportional to the product of the level width for γ decay $\Gamma_{\gamma,0^+_{\tau}\to1^+_{\tau}}$ and a γ -ray energy (E_{γ}) dependent factor, has been the subject of considerable effort in the past. The extremely short half-life of the excited state of about 80 attoseconds (10^{-18} s) [3] makes a direct measurement of its decay rate impossible [18]. Panels (a)–(c) of Fig. 1 show the history of published values for this quantity as compiled in the Evaluated Nuclear Structure Data Files (ENSDF) [3]. These values have been obtained using three different techniques: nuclear resonance fluorescence (NRF) relative to another transition (relative NRF) [19,20], self-absorption (SAbs) [20–25], and inelastic electron scattering (e, e') [26–30]. In the ENSDF, a weighted average value of $B(M1)_{\text{ENSDF}} =$ 15.65(32) μ_N^2 [from $\Gamma_{\gamma,0^+_1 \to 1^+_1} = 8.19(17)$ eV [3,32]], is derived from a selection of three of the most recent publications in Ref. [33]. The selection excludes earlier measurements with obvious systematic deviations [for comparison: a weighted average of all measurements yields a value of $B(M1) = 14.53^{+0.20}_{-0.30} \mu_N^2$]. Regardless of the averaging procedure, the final result is strongly dominated by two (e, e') results of Eigenbrod [29] and, in particular, of Bergstrom et al. [30], that claim the highest precision. In such an (e, e') experiment, the B(M1) value is obtained

in a model-dependent way from the measured form factor $|F(q)|^2$, where q denotes the momentum transfer. Both works employed the plane-wave Born approximation to obtain the q-dependent B(M1, q) from $|F(q)|^2$ [34], which is equal to the B(M1) strength in the limit of the minimum necessary momentum transfer $q_0 = E_{0_1^+}/\hbar c \approx 0.018$ fm, the so-called "photon point." Panel (d) of Fig. 1 shows B(M1, q) values obtained from the form factor of Bergstrom et al. [30], along with an uncertainty band from one possible extrapolation in our attempt to reproduce their results [31]. Similar to Refs. [29] and [30], the present extrapolations employed fits of low-q expansions of the model-independent energy dependence of the form factor with different cutoffs to varying subsets of the low-q data. In order to match the width of the uncertainty band to the data point of Bergstrom et al., the selection of fits had to be limited to a reduced chi-square χ^2_{ν} on the order of 0.1. It was found that the width of this band can easily be extended by increasing the cutoff or relaxing the restriction on χ^2_{ν} . The obvious presence of systematic uncertainty in the literature data precludes a comparison to state-of-the art theoretical results [2,12] and calls for a precision measurement directly at the photon point to avoid the extrapolation uncertainty.

We have, therefore, performed an experiment to measure $\Gamma_{\gamma,0_1^+ \rightarrow 1_1^+}$ with the newly developed NRF-based relative SAbs method [35,36]. Compared to the traditional SAbs technique [37] used in several previous experiments [20–25], it uses a normalization target (no) in combination with the scattering target of interest (sc) to separate resonant and nonresonant processes (a detailed derivation of this equation can be found in the Supplemental Material [31]):

$$R_{\rm exp} = 1 - \left\langle \frac{N_{\rm no}^{\rm nrf}}{N_{\rm no}^{\rm abs}} \right\rangle \frac{N_{\rm sc}^{\rm abs}}{N_{\rm sc}^{\rm nrf}} = R(\Gamma_{\gamma,0^+_1 \to 1^+_1}, T_{\rm eff}).$$
(1)

In Eq. (1), N_x^{nrf} denotes the number of observed NRF events from a γ -ray line from material x. The number of events is reduced to N_x^{abs} in a second measurement by the introduction of an absorber target, which consists of the same material as the scatterer of interest, into the incident continuous-energy photon beam. The reduction of the count rate of the NRF line of interest is due to nonresonant scattering as well as the SAbs induced by the absorber. Both contributions can be separated in a model-independent way by using the reduction of the count rate in the NRF lines of the normalization target [factor $\langle N_{no}^{nrf}/N_{no}^{abs} \rangle$ in Eq. (1)], which is due to nonresonant effects, only. In the absence of other decay branches, R_{exp} is directly related to $\Gamma_{\gamma,0^+_1 \to 1^+_1}$ [37,69] [see Eq. (1)] once the thermal motion of the nuclei of interest is taken into account. It can be treated in terms of an effective temperature $T_{\rm eff}$ [37,38,69] that includes corrections due to condensed-matter effects in the target material (see below).

The experiment was performed at the Darmstadt High-Intensity Photon Setup [39], with continuous-energy photon beams generated by bremsstrahlung processes of a 7.1(2) MeV electron beam of the Superconducting Darmstadt Linear Accelerator [40,70] on a copper radiator. A scattering target composed of 5.033(5) g [particle areal density $d_{sc \text{Li}} = 0.02773(6) \text{ b}^{-1}$, using a target diameter of 20.00(5) mm] of lithium carbonate (Li₂CO₃) enriched to 95.00(1)% in ⁶Li, sandwiched between pure boron normalization targets of 2.118(5) g and 2.119(5) g with a 99.52(1)% ¹¹B enrichment, was measured for about 122 h. A second measurement, 186 h, was carried out with a 9.938(5) g $[d_{abs,Li} = 0.05469(10) b^{-1}]$ absorber of the same Li₂CO₃ material. Scattered γ rays from the target were detected by three high-purity germanium detectors at polar angles of 90° (twice) and 130° with respect to the beam axis. To avoid direct scattering of γ rays from the absorber target into the detectors, the target was mounted at the entrance of the 1 m-long collimation system of the Darmstadt High-Intensity Photon Setup, which acts as a passive shielding. The direct scattering into the detectors was found to be negligible by an additional 8 h measurement with the absorber target only. A potential systematic uncertainty due to small-angle scattering of bremsstrahlung γ rays inside the collimator, which would then induce excess NRF reactions in the scatterer, was found to be on the order of 0.33% by GEANT4 [41-43] simulations (i.e., in the anticipated order of magnitude of the uncertainty of R) and taken into account by replacing $\langle N_{no}^{nrf}/N_{no}^{abs}\rangle$ with $1.0033 \times \langle N_{\rm no}^{\rm nrf} / N_{\rm no}^{\rm abs} \rangle$ in Eq. (1). The summed spectra of all three detectors from the measurements with and without absorber are provided in Fig. 2. Using the known internal γ -ray transitions of ¹¹B at 2125, 4445, and 5020 keV [44],

FIG. 2. Summed spectra of the three detectors from the measurement with (gold) and without (black) the ⁶Li absorber. For better visibility, the spectrum with the absorber was shifted by 100 keV to higher energies. The observed NRF events of three transitions of ¹¹B were used to normalize the spectrum with the absorber, so that the difference in counts for the ⁶Li transition is due to SAbs only. On the right-hand side of the transitions of interest, the (absolute) value of the SAbs (R_{exp}) is indicated, which is expected to be zero for ¹¹B.

the measurement with the absorber was normalized to the one without it using the energy-dependent factor $N_{no}^{nrf}/N_{no}^{abs}$ in Eq. (1). The normalization factor at the three discrete energies of the ¹¹B transitions were interpolated by a GEANT4 simulation of the γ -ray attenuation, which was in turn validated by an off-line measurement with a radio-active ⁵⁶Co source. Including the counting statistics and the correction factor for small-angle scattering and propagating uncertainties with a Monte Carlo method [45], a value of $R_{exp} = 0.5192(20)$ with a relative uncertainty of 0.39% was obtained.

Li₂CO₃ was chosen as the target material to reduce systematic uncertainties because pure lithium, used in all previous experiments [19–30], is highly hygroscopic, which may lead to systematic errors in the determination of the target thickness. The $T_{\rm eff}$ value for Li₂CO₃ [see Eq. (1)] was determined from state-of-the-art atomic theory. First, the phonon density of states of Li₂CO₃ was obtained from density functional theory [71,72]. Computations of this observable are typically in excellent agreement with experimental data [73,74]. The density functional theory calculations employed the GPAW [75,76] code in a planewave basis. For the exchange-correlation (xc) potential, the local-density approximation (LDA) [77] and the generalized-gradient approximation (GGA) [78] were tried. These approximations typically slightly underestimate (LDA) and overestimate (GGA) the crystal binding. Both xc potentials reproduced the experimental lattice constants a, b, c, and γ of Li_2CO_3 [79] with deviations at the 0.1% level; this can be viewed as a benchmark test. From the phonon density of states, a value of $T_{\rm eff} = 411(11)$ K was obtained by

the procedure described in Ref. [38], which represents the average value and spread of the LDA and GGA solutions. Using all the aforementioned input [31], our experimental value for the γ -decay width is $\Gamma_{\gamma,0_1^+ \to 1_1^+} =$ $8.17^{+0.14}_{-0.13}(\text{stat.})^{+0.10}_{-0.11}(\text{syst.}) \text{ eV}$, which corresponds to a strength $B(M1;0^+ \to 1^+) = 15.61^{+0.27}_{-0.25}(\text{stat.})^{+0.19}_{-0.21}(\text{syst.})\mu_N^2$. The 68.3% coverage interval (CI) is divided into statistical (stat.) and systematic (syst.) parts, where the latter accounts for uncertainties in the target dimensions as well as in atomic and condensed-matter contributions. (Since both contributions are uncorrelated and the CIs are almost symmetric, a symmetrized and quadratically summed uncertainty of $15.61(33) \mu_N^2$ is used in all figures.)

For the *ab initio* calculations, the importance-truncated no-core shell model (IT-NCSM) [80,81] was employed as a state-of-the-art many-body method. Within the IT-NCSM, two-nucleon (NN) and three-nucleon (3N) interactions derived within γ EFT were used. Four different Hamiltonians (I-IV) were considered, including (I) the Entem-Machleidt (EM) NN interaction at N³LO [82], complemented with a local 3N interaction (cutoff $\Lambda = 500$ MeV, $c_D = 0.8$) at N²LO, which is fitted to reproduce the binding energy as well as the β -decay half-life of ³H [83,84]. Furthermore, Hamiltonians (II-IV) use the NN interactions by Entem, Machleidt, and Nosyk (EMN) at N²LO, N³LO, and N⁴LO with $\Lambda =$ 500 MeV [8], complemented with consistent nonlocal 3N interactions up to N²LO, N³LO, and N³LO, respectively. The NN interactions were only fitted to NN scattering data and the deuteron binding energy, while the 3N interactions were fitted to reproduce the triton binding energy and to optimize the ground-state energy and radius of ⁴He, which led to the values $c_D = -1$, $c_D = 2$, and $c_D = 3$, for the cases II, III, and IV, respectively. The similarity renormalization group (SRG) was employed at the NN and 3N level with a flow parameter of $\alpha = 0.08 \text{ fm}^4$ [85,86].

Using an SRG-transformed Hamiltonian requires a consistent SRG transformation of the M1 operator. In previous studies [13–16], this consistent treatment was neglected. Here SRG corrections of the M1 operator were included at the two-body level. In addition to the SRG correction, the next-to-leading order (NLO) 2BC contributions to the M1 operator were included as well. At NLO, these are commonly expressed as a sum of two contributions: the "intrinsic" term and the "Sachs" term [87]:

with

$$\begin{split} \boldsymbol{\mu}_{[12]}^{\text{intrinsic}}(\boldsymbol{k}) &= -\frac{i}{2} \nabla_q \times \boldsymbol{J}(\boldsymbol{q}, \boldsymbol{k}) \Big|_{\boldsymbol{q}=0} \\ \boldsymbol{\mu}_{[12]}^{\text{Sachs}}(\boldsymbol{R}, \boldsymbol{k}) &= -\frac{i}{2} e(\boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2)_z \boldsymbol{R} \times \nabla_k v(\boldsymbol{k}). \end{split}$$

 $\pmb{\mu}^{\mathrm{NLO}}_{[12]}(\pmb{R},\pmb{k})=\pmb{\mu}^{\mathrm{intrinsic}}_{[12]}(\pmb{k})+\pmb{\mu}^{\mathrm{Sachs}}_{[12]}(\pmb{R},\pmb{k})$

TABLE I. Results of the theoretical calculations for $B(M1; 0^+_{1,T=1} \rightarrow 1^+_{1,T=0})$ and $\mu(1^+_{1,T=0})$ of ⁶Li. These employed four different Hamiltonians (I–IV), which are introduced in the text. The calculations are sorted by the type of *M*1 operator, with the same abbreviations as in Fig. 3. For comparison, the results of QMC calculations in Refs. [11,12] are shown in the second part of the table. The "standard nuclear physics approach" (SNPA) for the operator in Ref. [11] was complemented by a χ EFT approach in Ref. [12], while in both cases phenomenological potentials were used. "LO" refers to one-body currents and "Total" to the inclusion of two-body currents.

	Ι	II	III	IV
LO				
μ (μ_N)	0.8399(22)	0.8374(24)	0.8344(21)	0.8388(18)
$B(M1)~(\mu_N^2)$	15.02(10)	14.92(13)	14.68(10)	14.81(10)
LO SRG ev.				
$\mu (\mu_N)$	0.8221(28)	0.8195(29)	0.8188(26)	0.8236(23)
$B(M1) \ (\mu_N^2)$	14.44(8)	14.36(11)	14.13(8)	14.32(8)
NLO SRG ev	v.			
$\mu (\mu_N)$	0.8240(34)	0.8216(34)	0.8217(32)	0.8261(28)
$B(M1) \ (\mu_N^2)$	15.74(12)	15.48(15)	15.15(13)	15.32(13)
	[11]		[12]	
QMC LO				
	SNPA		SNPA	χEFT
$\mu (\mu_N)$	0.810(1)		0.817(1)	0.817(1)
$B(M1)~(\mu_N^2)$	12.84(11)			13.18(4)
QMC Total				
μ (μ_N)	0.800(1)		0.807(1)	0.837(1)
$B(M1) \ (\mu_N^2)$	15.00(11)			16.07(6)

Here, τ_i are the Pauli matrices, q the momentum transfer of the photon, $v(\mathbf{k})$ the one-pion exchange potential in momentum representation, and **R** the center of mass coordinate of the two nucleons. The Sachs term only depends on the potential between the two nucleons, whereas the translationally invariant intrinsic term is given by the spatial part of the two-body current J. For each interaction, an IT-NCSM calculation was carried out with $N_{\rm max}$ from 2 to 12 with harmonic-oscillator frequencies $\hbar\Omega = 16, 20, 24$ MeV. For the resulting value of the magnetic moment and the transition strength, the central value for the highest N_{max} was used as the nominal result, and the neighboring results as an estimate for the many-body uncertainties. The results of the calculations are listed in Table I and displayed in Fig. 3 [see also panels (e) and (f) of Fig. 1], where they are compared to the new experimental constraint of the present work and the magnetic moment $\mu(1^+_{1,T=0}) = 0.82205667(26) \mu_N$ [3] of the ground state of ⁶Li.

Remarkably, the results of the most complete calculations, including contributions from the 2BC to the M1operator, exhibit an excellent agreement with the new experimental constraints of the present work. This indicates the importance of 2BC for a correct description of the ⁶Li nucleus. The residual differences between experiment and

(2)

FIG. 3. Results for $B(M1; 0^+_{1,T=1} \rightarrow 1^+_{1,T=0})$ and $\mu(1^+_{1,T=0})$ from theoretical calculations based on Hamiltonians I–IV (see also Table I). As shown in the upper legend, circular markers indicate calculations with the unevolved leading-order (LO) one-body transition operator, triangular markers indicate calculations with the consistently SRG-transformed operator (LO SRG ev.), and quadratic markers indicate the calculations with a consistently SRG-transformed operator including contributions from next-toleading order 2BC (NLO SRG ev.). The labeled arrows illustrate the impact of the two aforementioned improvements. Figure 1 shows only the results with the most complete transition operator in the same color code. The experimental 68% CI for B(M1)(present work) is indicated by a shaded area, and the most probable values of B(M1) and μ [3] by a solid line (the CI of μ is not visible at this scale).

theory are probably related to missing higher-order contributions to the M1 operator. The increase of the B(M1)strength is also found in quantum Monte Carlo (QMC) calculations when 2BC are included [11,12] (see also Table I).

In contrast to the data points that presently dominate the world average, this measurement was performed directly at the photon point and with controlled systematic uncertainties. In total, a relative uncertainty of 2% with balanced contributions by statistics and systematics was achieved. This translates into an uncertainty of about 2 attoseconds for the half-life of the 0_1^+ state of ⁶Li. In addition, χ EFT nuclear structure calculations were performed that take into account 2BC at NLO, combined with chiral interactions at various orders, for the first time. Excellent agreement between experiment and theory was found at a new level of precision in both areas.

We thank the crew of the Superconducting Darmstadt Linear Accelerator for providing excellent conditions for experimentation. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under Grant Nos. SFB 634 (Project ID 5485852), SFB 1044 (204404729), SFB 1245 (279384907) and the Cluster Excellence PRISMA⁺ (39083149), of by the Bundesministerium für Bildung und Forschung under Grant No. 05P18PKEN9, and by the State of Hesse the LOEWE research project within "Nuclear Photonics." Numerical calculations have been performed on the Lichtenberg cluster at the computing center of the TU Darmstadt. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under the FRIB Theory Alliance Award No. DE-SC0013617. M.B., P.C.R., T.B., and U.F.G. acknowledge support by the Helmholtz Graduate School for Hadron and Ion Research of the Helmholtz Association. R. S. acknowledges support by the International Max Planck Research School for Precision Tests of Fundamental Symmetries.

 ^{*}Corresponding author. ufrimangayer@ikp.tu-darmstadt.de
[†]Present address: Projektträger DESY, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany.

- E. Epelbaum, H. W. Hammer, and U.-G. Meißner, Modern theory of nuclear forces, Rev. Mod. Phys. 81, 1773 (2009).
- [2] S. Bacca and S. Pastore, Electromagnetic reactions on light nuclei, J. Phys. G 41, 123002 (2014).
- [3] D. R. Tilley, C. M. Cheves, J. L. Godwin, G. M. Hale, H. M. Hofmann, J. H. Kelley, C. G. Sheu, and H. R. Weller, Energy levels of light nuclei A = 5, 6, 7, Nucl. Phys. **A708**, 3 (2002).
- [4] P. A. Zyla, R. M. Barnett, J. Beringer, O. Dahl, D. A. Dwyer, D. E. Groom, C. J. Lin, K. S. Lugovsky, E. Pianori, D. J. Robinson *et al.* (Particle Data Group), Review of particle physics, Prog. Theor. Exp. Phys. **2020**, 083C01 (2020).
- [5] R. G. H. Robertson, P. Dyer, R. C. Melin, T. J. Bowles, A. B. McDonald, G. C. Ball, W. G. Davies, and E. D. Earle, Upper limit on the isovector parity-violating decay width of the 0^+ T = 1 state of ⁶Li, Phys. Rev. C **29**, 755 (1984).
- [6] O. Hashimoto and H. Tamura, Spectroscopy of Δ hypernuclei, Prog. Part. Nucl. Phys. 57, 564 (2006).
- [7] A. Knecht, R. Hong, D. W. Zumwalt, B. G. Delbridge, A. García, P. Müller, H. E. Swanson, I. S. Towner, S. Utsuno, W. Williams, and C. Wrede, Precision Measurement of the ⁶He Half-Life and the Weak Axial Current in Nuclei, Phys. Rev. Lett. **108**, 122502 (2012).
- [8] D. R. Entem, R. Machleidt, and Y. Nosyk, High-quality two-nucleon potentials up to fifth order of the chiral expansion, Phys. Rev. C 96, 024004 (2017).
- [9] B. R. Barrett, P. Navrátil, and J. P. Vary, Ab initio no core shell model, Prog. Part. Nucl. Phys. 69, 131 (2013).
- [10] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla, K. E. Schmidt, and R. B. Wiringa, Quantum Monte Carlo methods for nuclear physics, Rev. Mod. Phys. 87, 1067 (2015).

- [11] L. E. Marcucci, M. Pervin, S. C. Pieper, R. Schiavilla, and R. B. Wiringa, Quantum Monte Carlo calculations of magnetic moments and *M*1 transitions in $A \le 7$ nuclei including meson-exchange currents, Phys. Rev. C **78**, 065501 (2008).
- [12] S. Pastore, S. C. Pieper, R. Schiavilla, and R. B. Wiringa, Quantum Monte Carlo calculations of electromagnetic moments and transitions in $A \le 9$ nuclei with mesonexchange currents derived from chiral effective field theory, Phys. Rev. C 87, 035503 (2013).
- [13] A. Calci and R. Roth, Sensitivities and correlations of nuclear structure observables emerging from chiral interactions, Phys. Rev. C 94, 014322 (2016).
- [14] N. M. Parzuchowski, S. R. Stroberg, P. Navrátil, H. Hergert, and S. K. Bogner, Ab initio electromagnetic observables with the in-medium similarity renormalization group, Phys. Rev. C 96, 034324 (2017).
- [15] I. J. Shin, Y. Kim, P. Maris, J. P. Vary, P. Forssén, J. Rotureau, and N. Michel, *Ab initio* no-core solutions for ⁶Li, J. Phys. G 44, 075103 (2017).
- [16] S. Binder, A. Calci, E. Epelbaum, R. J. Furnstahl, J. Golak, K. Hebeler, T. Hüther, H. Kamada, H. Krebs, P. Maris, U.-G. Meißner, A. Nogga, R. Roth, R. Skibiński, K. Topolnicki, J. P. Vary, K. Vobig, and H. Witała (LENPIC Collaboration), Few-nucleon and many-nucleon systems with semilocal coordinate-space regularized chiral nucleon-nucleon forces, Phys. Rev. C 98, 014002 (2018).
- [17] P. Gysbers, G. Hagen, J. D. Holt, G. R. Jansen, T. D. Morris, P. Navrátil, T. Papenbrock, S. Quaglioni, A. Schwenk, S. R. Stroberg, and K. A. Wendt, Discrepancy between experimental and theoretical β-decay rates resolved from first principles, Nat. Phys. 15, 428 (2019).
- [18] P. J. Nolan and J. F. Sharpey-Schafer, The measurement of the lifetimes of excited nuclear states, Rep. Prog. Phys. 42, 1 (1979).
- [19] E. Booth and K. A. Wright, Nuclear resonance scattering of bremsstrahlung, Nucl. Phys. 19, 426 (1962).
- [20] S. J. Skorka, J. Hertel, and T. W. Retz-Schmidt, Compilation of electromagnetic transition rates in light nuclei ($A \le 40$), Nucl. Data Sheets A **2**, 347 (1966); H. Wahl *et al.* (to be published).
- [21] L. Cohen and R. A. Tobin, Lifetime of the 3.56-MeV state of Li⁶, Nucl. Phys. **14**, 243 (1959).
- [22] S. J. Skorka, R. Hübner, T. W. Retz-Schmidt, and H. Wahl, Width of the 3.56 MeV (T = 1) level in Li⁶, Nucl. Phys. 47, 417 (1963).
- [23] W. L. Creten, R. J. Jacobs, and H. M. Ferdinande, Widths of low-lying levels of ⁶Li, Nucl. Phys. A120, 126 (1968).
- [24] V. K. Rasmussen and C. P. Swann, Gamma-ray widths in C¹³, Li⁶, and P³¹, Phys. Rev. **183**, 918 (1969).
- [25] T. Saito, Resonance scattering of Bremsstrahlung by ⁶Li, ¹¹B and ²⁷Al, J. Phys. Soc. Jpn. **35**, 1 (1973).
- [26] W. C. Barber, F. Berthold, G. Fricke, and F. E. Gudden, Nuclear excitation by scattering of 40-Mev electrons, Phys. Rev. **120**, 2081 (1960).
- [27] W. C. Barber, J. Goldemberg, G. A. Peterson, and Y. Torizuka, Study of nuclear magnetic transitions by inelastic electron scattering, Nucl. Phys. 41, 461 (1963).

- [28] M. Bernheim and G. Bishop, Excitation of levels in Li⁶ by inelastic electron scattering, Phys. Lett. 5, 270 (1963).
- [29] F. Eigenbrod, Untersuchung der vier ersten angeregten Zustände des ⁶Li-Kernes durch Elektronenstreuung, Z. Phys. 228, 337 (1969).
- [30] J. Bergstrom, I. Auer, and R. Hicks, Electroexcitation of the 0⁺ (3.562 MeV) level of ⁶Li and its application to the reaction ⁶Li(γ, π^+)⁶He, Nucl. Phys. **A251**, 401 (1975).
- [31] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.126.102501 for an attempt by the authors of the present article to reconstruct the analysis of the electron scattering data of Ref. [30]; for more details on the relative self-absorption; for a detailed account of the experimental uncertainty, which includes Refs. [3–5,29,30,32–68].
- [32] F. Ajzenberg-Selove, Energy levels of light nuclei A = 5-10, Nucl. Phys. A490, 1 (1988).
- [33] F. Ajzenberg-Selove, Energy levels of light nuclei A = 510, Nucl. Phys. A**320**, 1 (1979).
- [34] H. Theissen, Spectroscopy of light nuclei by low energy (<70 MeV) inelastic electron scattering, Springer Tracts Mod. Phys. 65, 1 (1972).
- [35] C. Romig, D. Savran, J. Beller, J. Birkhan, A. Endres, M. Fritzsche, J. Glorius, J. Isaak, N. Pietralla, M. Scheck, L. Schnorrenberger, K. Sonnabend, and M. Zweidinger, Direct determination of ground-state transition widths of low-lying dipole states in ¹⁴⁰Ce with the self-absorption technique, Phys. Lett. B **744**, 369 (2015).
- [36] C. Romig, Investigation of nuclear structure with relative self-absorption measurements, Ph. D. thesis, Technische Universität Darmstadt, Darmstadt, 2015.
- [37] F.R. Metzger, Resonance fluorescence in nuclei, Prog. Nucl. Phys. 7, 53 (1959).
- [38] W.E. Lamb, Capture of neutrons by atoms in a crystal, Phys. Rev. 55, 190 (1939).
- [39] K. Sonnabend, D. Savran, J. Beller, M. A. Büssing, A. Constantinescu, M. Elvers, J. Endres, M. Fritzsche, J. Glorius, J. Hasper, J. Isaak, B. Löher, S. Müller, N. Pietralla, C. Romig, A. Sauerwein, L. Schnorrenberger, C. Wälzlein, A. Zilges, and M. Zweidinger, The Darmstadt high-intensity photon setup (DHIPS) at the S-DALINAC, Nucl. Instrum. Methods Phys. Res., Sect. A 640, 6 (2011).
- [40] N. Pietralla, The Institute of Nuclear Physics at the TU Darmstadt, Nucl. Phys. News 28, 4 (2018).
- [41] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand *et al.*, Geant4-a simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
- [42] J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek *et al.*, Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53, 270 (2006).
- [43] J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand *et al.*, Recent developments in Geant4, Nucl. Instrum. Methods Phys. Res., Sect. A 835, 186 (2016).
- [44] J. H. Kelley, E. Kwan, J. E. Purcell, C. G. Sheu, and H. R. Weller, Energy levels of light nuclei A = 11, Nucl. Phys. **A880**, 88 (2012).

- [45] Joint Committee for Guides in Metrology, Evaluation of measurement data–Guide to the expression of uncertainty in measurement, Bureau International des Poids et Mesures, JCGM100, 2008.
- [46] J. C. Bergstrom, Second Born approximation for magnetic multipole electroexcitation, Phys. Rev. C 11, 1514 (1975).
- [47] R. Neuhausen and R. M. Hutcheon, Investigation of the lowlying states in ⁶Li by inelastic electron scattering, Nucl. Phys. A164, 497 (1971).
- [48] R. Huby, Electromagnetic excitation of nuclei by nuclear projectiles and electrons, Rep. Prog. Phys. 21, 59 (1958).
- [49] G. C. Li, I. Sick, R. R. Whitney, and M. R. Yearian, Highenergy electron scattering from ⁶Li, Nucl. Phys. A162, 583 (1971).
- [50] M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, and A. Richter, Pair Decay Width of the Hoyle State and its Role for Stellar Carbon Production, Phys. Rev. Lett. 105, 022501 (2010).
- [51] A. D'Alessio *et al.*, Precision measurement of the *E*2 transition strength to the 2_1^+ state of 12 C, Phys. Rev. C **102**, 011302(R) (2020).
- [52] U. Kneissl, H. H. Pitz, and A. Zilges, Investigation of nuclear structure by resonance fluorescence scattering, Prog. Part. Nucl. Phys. 37, 349 (1996).
- [53] G. Breit and E. Wigner, Capture of slow neutrons, Phys. Rev. 49, 519 (1936).
- [54] L. Van Hove, Correlations in space and time and Born approximation scattering in systems of interacting particles, Phys. Rev. 95, 249 (1954).
- [55] K. S. Singwi and A. Sjölander, Resonance absorption of nuclear gamma rays and the dynamics of atomic motions, Phys. Rev. **120**, 1093 (1960).
- [56] M. J. Berger, J. S. Coursey, M. A. Zucker, and J. Chang, Stopping-power & range tables for electrons, protons and helium ions, NIST Technical Report NISTIR 4999, 2017.
- [57] R. Schwengner, R. Beyer, F. Dönau, E. Grosse, A. Hartmann, A. R. Junghans, S. Mallion, G. Rusev, K. D. Schilling, W. Schulze, and A. Wagner, The photon-scattering facility at the superconducting electron accelerator ELBE, Nucl. Instrum. Methods Phys. Res., Sect. A 555, 211 (2005).
- [58] L. I. Schiff, Energy-angle distribution of thin target Bremsstrahlung, Phys. Rev. 83, 252 (1951).
- [59] C. Y. Ho, R. W. Powell, and P. E. Liley, Thermal conductivity of the elements, J. Phys. Chem. Ref. Data 1, 279 (1972).
- [60] J. H. Kelley, J. E. Purcell, and C. G. Sheu, Energy levels of light nuclei A = 12, Nucl. Phys. A968, 71 (2017).
- [61] D. R. Tilley, H. R. Weller, and C. M. Cheves, Energy levels of light nuclei A = 16-17, Nucl. Phys. A564, 1 (1993).
- [62] J. H. Hubbell and S. M. Seltzer, Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest, NIST Technical Report NISTIR 5632, 2004.
- [63] J. Pruet, D. P. McNabb, C. A. Hagmann, F. V. Hartemann, and C. P. J. Barty, Detecting clandestine material with nuclear resonance fluorescence, J. Appl. Phys. 99, 123102 (2006).

- [64] J. R. Vavrek, B. S. Henderson, and A. Danagoulian, Validation of Geant4s G4NRF module against nuclear resonance fluorescence data from ²³⁸U and ²⁷Al, Nucl. Instrum. Methods Phys. Res., Sect. A **459**, 188 (2019).
- [65] X-5 Monte Carlo Team, MCNP-version 5, vol. I: Overview and theory, LANL Technical Report LA-UR-03-1987, 2003.
- [66] J. Mayer, E. Hoemann, M. Müllenmeister, P. Scholz, and A. Zilges, Efficient determination of HPGe γ-ray efficiencies at high energies with ready-to-use simulation software, Nucl. Instrum. Methods Phys. Res., Sect. A **972**, 164102 (2020).
- [67] N. Pietralla, Lebensdauerbestimmung im Kern ²⁷Al durch Selbstabsorptions-Experimente, Diplomarbeit, Institut für Kernphysik, Universität zu Köln, 1993.
- [68] R. P. Gardner and A. Carnesale, The solid angle subtended at a point by a circular disk, Nucl. Instrum. Methods 73, 228 (1969).
- [69] N. Pietralla, I. Bauske, O. Beck, P. von Brentano, W. Geiger, R.-D. Herzberg, U. Kneissl, J. Margraf, H. Maser, H. H. Pitz *et al.*, Absolute level widths in ²⁷Al below 4 MeV, Phys. Rev. C **51**, 1021 (1995).
- [70] A. Richter, Operational experience at the S-DALINAC, in *Proc. EPAC'96* (Sitges, 1996).
- [71] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964).
- [72] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).
- [73] X. Gonze and C. Lee, Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B 55, 10355 (1997).
- [74] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73, 515 (2001).
- [75] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Realspace grid implementation of the projector augmented wave method, Phys. Rev. B 71, 035109 (2005).
- [76] J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen *et al.*, Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method, J. Phys. Condens. Matter 22, 253202 (2010).
- [77] J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45, 13244 (1992).
- [78] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation made Simple, Phys. Rev. Lett. 77, 3865 (1996).
- [79] H. Effenberger and J. Zemann, Verfeinerung der Kristallstruktur des Lithiumkarbonates, Li₂CO₃, Z. Kristallogr. **150**, 133 (1979).
- [80] R. Roth, Importance truncation for large-scale configuration interaction approaches, Phys. Rev. C 79, 064324 (2009).
- [81] R. Roth and P. Navrátil, *Ab Initio* Study of ⁴⁰Ca with an Importance-Truncated No-Core Shell Model, Phys. Rev. Lett. **99**, 092501 (2007).

- [82] D. R. Entem and R. Machleidt, Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory, Phys. Rev. C 68, 041001(R) (2003).
- [83] D. Gazit, S. Quaglioni, and P. Navrátil, Three-Nucleon Low-Energy Constants from the Consistency of Interactions and Currents in Chiral Effective Field Theory, Phys. Rev. Lett. 103, 102502 (2009).
- [84] D. Gazit, S. Quaglioni, and P. Navrátil, Three-Nucleon Low-Energy Constants from the Consistency of Interactions and Currents in Chiral Effective Field Theory Phys. Rev. Lett. 103, 102502 (2009); Erratum, Phys. Rev. Lett.122, 029901 (2019).
- [85] R. Roth, J. Langhammer, A. Calci, S. Binder, and P. Navrátil, Similarity-Transformed Chiral NN + 3N Interactions for the Ab Initio Description of ¹²C and ¹⁶O, Phys. Rev. Lett. **107**, 072501 (2011).
- [86] R. Roth, A. Calci, J. Langhammer, and S. Binder, Evolved chiral NN + 3N Hamiltonians for ab initio nuclear structure calculations, Phys. Rev. C **90**, 024325 (2014).
- [87] S. Pastore, L. Girlanda, R. Schiavilla, M. Viviani, and R. B. Wiringa, Electromagnetic currents and magnetic moments in chiral effective field theory (χ EFT), Phys. Rev. C **80**, 034004 (2009).