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We present, for the first time, an ab initio calculation of the individual up, down, and strange quark
helicity parton distribution functions for the proton. The calculation is performed within the twisted mass
clover-improved fermion formulation of lattice QCD. The analysis is performed using one ensemble of
dynamical up, down, strange, and charm quarks with a pion mass of 260 MeV. The lattice matrix elements
are nonperturbatively renormalized and the final results are presented in the MS scheme at a scale of 2 GeV.
We give results for ΔuþðxÞ, ΔdþðxÞ Δu−ðxÞ, Δd−ðxÞ, including disconnected quark loop contributions, as
well as for ΔsþðxÞ and Δs−ðxÞ. For the latter we achieve unprecedented precision compared to the
phenomenological estimates.
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Introduction.—The theory of the strong interaction,
quantum chromodynamics (QCD), describes the structure
of hadrons in terms of their constituent quark and gluons
(partons), via distribution functions. These are universal
quantities and, therefore, can be accessed by a variety of
high-energy scattering processes. The cross section of such
processes can be factorized into a component calculated in
perturbative QCD, and a nonperturbative part expressed in
terms of the partonic densities. The latter are the parton
distribution functions (PDFs), generalized parton distribu-
tions (GPDs), and transverse momentum distribution
functions (TMDs), which are necessary for the three-
dimensional mapping of the hadrons.
At leading order within the parton model, the PDFs have

a simple interpretation. The unpolarized PDFs are inter-
preted as the probability to find an unpolarized parton with
a longitudinal momentum fraction x within an unpolarized
nucleon. The helicity PDF is the difference between finding
quarks with spins aligned and opposite to that of a
longitudinally polarized nucleon. The colinear PDFs are
completed with the transversity PDFs, which correspond to
quarks polarized in the same or opposite direction as a
transversely polarized nucleon. High-energy experiments

(see, e.g., Refs. [1–3]) provide a wealth of measurements
that are collectively analyzed using phenomenological fits.
Based on the available experimental data, the most well-
studied PDFs are the unpolarized, followed by the helicity
with an order of magnitude less experimental data,
namely, a few hundred datasets [4,5]. The transversity
PDFs are even less known [6]. The accessible kinematic
region is more limited for the helicity and transversity PDFs
as compared to the unpolarized PDFs, and therefore, the
reconstruction of PDFs uses input from models. Therefore,
the extraction of the helicity and transversity PDFs are, to
some extent, driven by the fit functions (see, e.g.,
Ref. [6]). The dependence on the analysis procedure is
evidenced by the tension among some of the global
analyses [5,7–9].
The focus of this work is the helicity PDFs, which are

typically accessed experimentally in deep-inelastic scat-
tering (DIS), semi-inclusive DIS, Drell-Yan, and proton-
proton scattering processes. Currently, the global analyses
use next-to-leading order (NLO) corrections in perturba-
tive QCD (NNPDFPOL1.1, DSSV14, JAM17) [5,7–9]. In
these analyses, the up and down contributions,
ΔuðxÞ;ΔdðxÞ are better constrained in the valence sector,
with ΔuðxÞ being more precise. On the other hand,
constraining ΔsðxÞ is not successful, as the kinematic
regions of some of the datasets (e.g., the W-boson
production data) are not sensitive to the strangeness
[5]. The situation improves with the inclusion of kaon
production SIDIS data, but it is still unsatisfactory, and
influenced by theoretical assumptions. In the recent work
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of the JAM Collaboration [7] inclusive and semi-inclusive
data were used, finding the strange polarization to be very
small and consistent with zero.
Based on the current status of phenomenological

analyses, an extraction of the PDFs from theory is highly
desirable. Here, we present the first extraction of the up,
down, and strange helicity PDFs for the proton within
lattice QCD, the only known ab initio formulation of QCD.
We study both the valence and sea quark contributions that
allow one to perform a controlled decomposition of the u
and d PDFs. To obtain the PDFs, we implement the
quasi-PDF method [10], which is based on correlation
functions that are calculable on a Euclidean lattice. The
matrix elements are between proton states with a finite
momentum P⃗ ¼ ð0; 0; P3Þ. The proton is coupled with a
nonlocal operator with fermion fields separated by a
distance z connected by a Wilson line, in the same spatial
direction as P⃗. Thus, the matrix elements are defined in
coordinate space, with z varying from zero up to half the
spatial extent of the lattice. To extract physical quantities, a
Fourier transform is applied on the matrix elements to
obtain the so-called quasi-PDFs in momentum space, x. For
large values of P3, the momentum boost can be interpreted
as a Lorentz boost, recovering the light-cone PDF. The
difference between quasi-PDFs and light-cone PDFs is
OðΛ2

QCD=P
2
3; m

2
N=P

2
3Þ and is calculable in continuum

perturbation theory within the large momentum effective
theory (LaMET) [11]. A successful research program on
obtaining the PDFs using the quasi-PDFs method was
developed since Ji’s proposal, leading to theoretical and
numerical advances [12–51]. Recently, an exploratory
study appeared on the strange and charm unpolarized
PDFs [52] using ensembles with pion mass 310 and
690 MeV. However, the work only presents matrix ele-
ments in coordinate space. Other methods on extracting the
x dependence of distribution functions have been discussed
[53–81]. For an extensive review of the lattice calculations
using the quasi-PDFs method, as well as other approaches
to extract PDFs, see Refs. [82–84].
Lattice implementation.—Based on the quasi-PDFs

approach, the light-cone PDFs are obtained by the con-
volution of quasi-PDFs and the corresponding analytic
expression for the matching kernel calculated in continuum
perturbation theory. The quasi-PDFs are defined in momen-
tum space as

Δ̃qðx; μ; PÞ ¼ 2P3

Z þ∞

−∞

dz
4π

e−ixP3zMRðz; P3Þ; ð1Þ

and are Fourier transform of hadronic matrix elements

MRðz; P3; μÞ≡ Zðz; μÞMðz; P3Þ; ð2Þ

Mðz; P3Þ≡ hNðPÞjψ̄ðzÞγ3γ5Wð0; zÞψð0ÞjNðPÞi: ð3Þ

The proton initial and final states, jNðPÞi, carry the same
momentum P ¼ ðP0; 0; 0; P3Þ, as the PDFs are obtained in
the forward kinematic limit. Here we focus on the helicity
PDFs, Δq≡ gq1ðxÞ, and therefore use the axial nonlocal
operator. The bare matrix elements Mðz; P3Þ must be
renormalized with an appropriate renormalization function,
Zðz; μÞ, to remove divergences. We calculate Zðz; μÞ using
the RI0-type prescription proposed in Refs. [16,17]:

Zðz; μÞ
12Z−1

q ðμÞTrfVγ3γ5ðp; zÞ½VBorn
gT ðp; zÞ�−1g

����
p2¼μ2

0

¼ 1; ð4Þ

which is applied at each value of z separately. We refer the
reader to Ref. [34] for notation. Because of the presence of
the Wilson line, extracting the singlet renormalization
functions is very challenging, as it involves a disconnected
diagram. Here we use the nonsinglet function indicated by
Zðz; μÞ. We note that the difference between the singlet and
nonsinglet renormalization functions is expected to be
small, as is the case of the local axial operator [85]. The
difference between singlet and nonsinglet arises to two
loops in perturbation theory [86], explaining its small
value. In addition to the logarithmic divergences and finite
renormalization, the definition of Eq. (4) also removes the
power-law divergence of the Wilson line. Zðz; μÞ is
obtained at an RI0 scale μ0. In our analysis, we convert
to the MS scheme at a scale μ ¼ 2 GeV. An additional
conversion factor is used to bring Zðz; μÞ in the modified
MS scheme [34]. Therefore, the scale dependence appears
in the renormalized matrix element MRðz; P3; μÞ. While
the matrix elements of local operators mix under renorm-
alization [87], the nonlocal operators under study do not
mix in the renormalization process, as discussed in
Refs. [32,33,35]. This is because there is no additional
nonlocal ultraviolet divergence in the quasi-PDF, an argu-
ment that holds to all orders in perturbation theory.
However, the mixing occurs at the matching level and
should be eliminated. To disentangle the singlet helicity
PDFs requires the matrix elements of the gluon helicity
PDFs, which is beyond the scope of this work. The nature
of the mixing was also discussed earlier in Ref. [21] using
the auxiliary field approach.
The most widely used method to obtain the quasi-PDFs

is via the discretized Fourier transform of Eq. (1). More
recently, alternative reconstruction techniques are being
explored [44,70,81,88,89]. In this work, we compare the
standard Fourier transform, with the Bayes-Gauss-Fourier
transform [89], finding agreement within uncertainties. We
thus present results using the discretized Fourier transform.
As can be seen in Eq. (1), the quasi-PDFs depend on the

nucleon momentum P3, which should be finite but large.
This dependence is expected to be removed by the match-
ing kernel
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Δqðx; μÞ ¼
Z

∞

−∞

dξ
jξjC

�
ξ;

μ

xP3

�
Δ̃q

�
x
ξ
; μ; P3

�
; ð5Þ

which is calculated to a given order in continuum
perturbation theory. The matching kernel for the quasi-
PDFs approach has been extensively studied (see, e.g.,
Refs. [22–24,45–49]). In this work we employ the one-loop
matching kernel in the modified MS scheme, as defined in
Ref. [34]. Note that we choose the factorization scale to be
the same as the renormalization scale μ. The final step in
extracting the light-cone PDFs is the application of the
nucleon mass corrections, which have been calculated
analytically in Ref. [13].
Numerical methods.—Obtaining Mðz; P3Þ is the most

computationally demanding part of the calculation, as it
contains a nonlocal operator, and must be calculated in the
boosted frame. We perform the calculation including, for
the first time, connected and quark-disconnected diagrams,
for both the light and strange quark. In the light-quark
sector, we extract the isovector and isoscalar combinations,
which are decomposed into the up and down quark helicity
PDFs. The calculation is performed using an ensemble of
two light, a strange and a charm quark (Nf ¼ 2þ 1þ 1)
within the twisted mass fermion formulation with
clover term, produced by the Extended Twisted Mass
Collaboration [90]. The lattice spacing is a ¼ 0.093 fm
and the lattice volume is 323 × 64 (L ≈ 3 fm). The pion
mass is about 260 MeV and mπL ≈ 4.
The evaluation of the connected diagram uses the

techniques outlined in Ref. [34], including the implemen-
tation of the momentum smearing method [91], and five
stout smearing steps with parameter ρ ¼ 0.15, on the
Wilson line entering the operator. Both smearing methods
contribute to the reduction of the statistical noise. We refer
to Ref. [34] for the details. We use a total number of
measurements Nmeas ¼ 392, 1552, and 6320, for momenta
P3 ¼ 0.41, 0.83, and 1.24 GeV, respectively. The source-
sink separation is ts ¼ 0.94 fm for the lowest momentum
and ts ¼ 1.13 fm for the other two.
The evaluation of the quark-disconnected diagrams

involves the computation of disconnected quark loops that
have to be combined with the nucleon two-point correla-
tors. The quark loop with Wilson line reads

Lðtins; zÞ
¼

X
x⃗ins

Tr½D−1
q ðxins; xins þ zÞγ3γ5Wðxins; xins þ zÞ�; ð6Þ

where D−1
q ðxins; xins þ zÞ is the quark propagator, whose

endpoints are connected by a Wilson line. To reduce the
stochastic noise coming from the low modes [92], we
computed the first Nev ¼ 200 eigenpairs of the squared
Dirac twisted-mass operator. From the eigenpairs, the low-
modes contribution to the all-to-all propagator can be
exactly reconstructed and the high-modes contribution

can then be evaluated with stochastic techniques. In
particular, the stochastic evaluation of the disconnected
loops is based on well-established techniques developed for
local operators, such as hierarchical probing [93]. The latter
allows for reduction of the contamination of the off-
diagonal terms in the evaluation of the trace of Eq. (6),
up to a distance 2k. This is done using Hadamard vectors as
basis vectors for the partitioning of the lattice. Here, the
hierarchical probing algorithm has been implemented with
k ¼ 3 in 4 dimensions, leading to 512 Hadamard vectors.
In addition, for the stochastic evaluation of the discon-
nected loops we make use of the one-end trick [94,95] and
fully dilute spin and color sub-spaces. We have employed
successfully such methods in other studies of disconnected
contributions [85,96–98].
Results for the connected and disconnected

contributions.—For each value of the proton momentum,
P3 ¼ 0.41, 0.83, and 1.24 GeV, we compute the two-point
correlator for 200 source positions to reach a good
statistical accuracy. We also take all spatial orientations
of P3 and W, that is, �x;�y;�z. Moreover, both in the
two-point and disconnected three-point functions we aver-
age over the forward and backward contributions. The total
number of configurations analyzed is 330 for the two
smallest momenta, and 480 for the largest one, bringing the
total statistics to 66 000 and 96 000, respectively.
Momentum smearing is applied for the two largest values
P3 ¼ 0.83; 1.24 GeV. The gauge links in the Wilson line
entering the disconnected loop of Eq. (6) undergo 10
iterations of stout smearing, with parameter ρ ¼ 0.129.
To properly take into account the contamination of the

excited states occurring at small source-sink separations ts,
we compute the disconnected three-point correlators at
ts ¼ 0.75, 0.84, 0.94, 1.03, and 1.13 fm, and perform a
two-state fit analysis, following the procedure described in
Ref. [96]. We find that the plateau values converge to one
extracted using the two-state fit. For all z=a and P3 the
plateau value for ts ¼ 1.13 fm is in agreement with the one
extracted from the two-state fit. For example for the
isoscalar combination at z=a ¼ 0 and P3 ¼ 0.41 GeV
we find Mð2stÞðz=a ¼ 0Þ ¼ −0.19ð5Þ using the two-state
fit, while the plateau value isMðpltÞðz=a ¼ 0Þ ¼ −0.16ð3Þ.
We will use the results from the plateau method in what
follows. In Fig. 1 we show the renormalized matrix
elements using ts ¼ 1.13 fm for the disconnected contri-
butions. The real strange matrix element is about half as
compared to the disconnected uþ d. The latter is omitted
from Fig. 1 since it shows the same qualitative behavior as
the strange matrix elements. For both uþ d and strange we
clearly obtain a nonzero signal with statistical uncertainties
under control. The imaginary part of the disconnected
matrix elements is at least 1 order of magnitude smaller
than the real part. We note that the increase in the error for
z ¼ 8a in the disconnected part of the matrix element is due
to using hierarchical probing with length 2k and k ¼ 3.
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This is verified by repeating the evaluation of the dis-
connected diagrams with k ¼ 2, and confirm that the same
behavior occurs at z ¼ 4a and its multiples, reflecting the
limitation of the hierarchical probing technique when
dealing with large lengths of the Wilson line. In taking
the Fourier transform in Eq. (1), we choose the cutoff zmax
such that the renormalized matrix element is compatible
with zero. Since for the isoscalar and isovector matrix
elements this occurs at different values of the Wilson line
length z, we use different cutoffs zmax for the two quantities.
In particular, for the isoscalar case (the sum of connected
and disconnected contributions) at P3 ¼ 1.24 GeV, we use
zmax ¼ 7a, which is below the hierarchical probing
length of 8a. While, for the isovector case, we employ
zmax=a ¼ 10.
Two additional important issues need to be addressed in

order to extract the PDFs, namely, the dependence of the
results on the momentum boost and the accuracy of the
discrete Fourier transform. We examine these issues by
considering the xΔdþðxÞ≡ xðΔdþ Δd̄Þ distribution, since
the behavior is similar for the other two. To extract
the ΔdþðxÞ distribution we apply renormalization and
matching procedures separately on the isovector, isoscalar,
and strange quasi-PDFs. As mentioned above, we neglect
the mixing with the gluon helicity PDFs at the match-
ing level.
In Fig. 2 we show the momentum dependence of

xΔdþðxÞ. We observe that, while when increasing the
momentum from 0.41 to 0.83 GeV there is a discrepancy in
particular for large values of x, when we further increase the
momentum to P3 ¼ 1.24 GeV, the results become

compatible. This suggests that convergence has been
reached within the limits of our current precision. In
Fig. 2 we also show the dependence of the xΔdþðxÞ
distribution on the cutoff zmax adopted in the computation
of the isoscalar and isovector quasi-PDFs. Despite the fact
that when increasing zmax, the resulting distribution tends to
show more pronounced oscillations, the results for different
zmax all agree within uncertainties. In order to estimate the
extent of the systematic effect due to the discretization and
truncation of the Fourier transform (FT), we employ the
Bayes-Gauss-Fourier transform (BGFT) [89]. As can be
seen in Fig. 2, the distribution obtained with the BGFT
technique is compatible with the standard reconstruction
based on the discrete FT.
Flavor decomposition and comparison with

phenomenology.—The aim of this work is to obtain the
flavor decomposition of the up, down, and strange quark
distributions, by combining the total isoscalar and isovector
contributions at each P3 value. In Fig. 3 we show our final
results at P3 ¼ 1.24 GeV for jxjΔqþðxÞ≡ jxjðΔqþ Δq̄Þ
and jxjΔq−ðxÞ≡ jxjðΔq − Δq̄Þ, for q ¼ u, d, s, and
compare with the JAM17 [7] and NNPDFPOL1.1 [5,99]
data. We find that xΔdþðxÞ and xΔsþðxÞ nicely decay to
zero at x ¼ 1. While xΔuþðxÞ is also zero at x ¼ 1 and in
agreement with the JAM17 results for x≲ 0.6 and with the
NNPDFPOL1.1 data for x≲ 0.5, it decays slower than the

FIG. 1. Real (left) and imaginary (right) part of the renormal-
ized matrix elements of the isoscalar uþ d connected (upper
panel) and isovector u − d (middle panel) and the strange quark
(lower panel).

FIG. 2. Dependence on the cutoff zmax of the Δdþ distribution
(upper panel) at P3 ¼ 1.24 GeV. The first(second) number
reported between curly brackets indicates the value of zmax
adopted with the isoscalar (isovector) matrix element. Compari-
son between the Δdþ distribution at P3 ¼ 1.24 GeV obtained
with discrete Fourier transform and with the BGFT technique
[89] (middle panel), using the cutoff f7; 10g in both cases.
Momentum dependence of the distribution Δdþ (bottom panel).
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phenomenological distributions. On the other hand, we find
a remarkable agreement for xΔdþðxÞ for the whole x
region. Both xΔu− and xΔd− distributions are compatible
with phenomenology for x≲ 0.2, but are bigger in magni-
tude for x > 0.2, with the former having a larger deviation
from zero at x ¼ 0. Such deviations are expected to be due
to lattice artifacts, such as a larger than physical pion mass,
and finite lattice spacing effects that are currently under
investigation in the isovector channel [100].
Our determination of the strange distribution xΔsþðxÞ is

more precise as compared to the one determined from both
the JAM17 and the NNPDFPOL1.1 analyses. We note that
for the latter the higher accuracy is achieved by assuming
SU(3) which is not imposed for the former. Moreover,
unlike the phenomenological determinations, we do not
force the distributions to go to zero at x ¼ 1. Our results for
xΔsþ are compatible for the whole x region with these
global analyses. Since the imaginary part of the strange
quark renormalized matrix elements is almost zero as
shown in Fig. 1, the distribution Δs−ðxÞ is zero and thus
not shown here. We find that our results confirm a nonzero
value for xΔsþ for small values of x. This is a significant
outcome and provides a valuable input for phenomeno-
logical studies.
Conclusions.—Results for the up, down, and strange

quark helicity PDFs of the proton, within lattice QCD are
presented for the first time using the quasi-PDFs approach.
We compute matrix elements with nucleon states boosted to
maximum momentum P3 ¼ 1.24 GeV. We verify that the

ground state matrix elements are well determined by using
one- and two-state fits, confirming that ts ¼ 1.13 fm is
sufficiently large to suppress excited state contributions at
this level of precision. The matrix elements are renormal-
ized nonperturbatively, and matched to the light-cone PDFs
using one-loop perturbation theory. For the flavor decom-
position of the light quark PDFs we take into account, for
the first time, both connected and disconnected diagrams
and compute the totally disconnected strange PDF. The
final results on jxjΔqþ and jxjΔq− are shown in Fig. 3, and
are compared with the global fits of the JAM and NNPDF
Collaborations. We find a remarkable agreement for the
case of Δdþ for all values of x and for case of Δuþ for
x < 0.6. We also obtain Δsþ much more precise that the
phenomenological determination and show that is clearly
non-zero for small values of x. This work paves the way for
a determination of these helicity PDFs using ensembles
simulated with pion mass, which we plan to do in the near
future.
In the near future, a number of sources of systematic

uncertainties will be explored, using the particular ensem-
ble, along the lines of the analysis of Ref. [34]. Another
effect is the implementation of the mixing matching matrix
between quark and gluon PDFs, which requires knowledge
of the gluon matrix elements of nonlocal operators.
Systematic uncertainties requiring more than one ensemble
include discretization effects, volume effects, and pion
mass dependence. We plan to assess a proper determination
of all sources of systematic uncertainties for the individual
flavor PDFs in the future. Once systematic uncertainties are
addressed and quantified, lattice results can provide useful
input in the global fits for the strange PDFs, as well as the
individual light-quark PDFs. This calculation is a first step
towards achieving this goal.
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