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We study the holographic complexity conjectures for rotating black holes, uncovering a relationship
between the complexity of formation and the thermodynamic volume of the black hole. We suggest that it is
the thermodynamic volume and not the entropy that controls the complexity of formation of large black
holes in both the complexity equals action and complexity equals volume proposals in general. Our
proposal reduces to known results involving the entropy in settings where the thermodynamic volume and
entropy are not independent, but has broader scope. Assuming a conjectured inequality is obeyed by the
thermodynamic volume, we establish that the complexity of formation is bounded from below by the
entropy for large black holes.
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In recent years there has been dramatic progress in
understanding the connections between gravity and quan-
tum information. The quintessential example of this is
entanglement in the context of the Anti-de Sitter/Conformal
Field Theory correspondence (AdS/CFT) correspondence.
Through the Ryu-Takayanagi prescription and its general-
izations [1–4] the duality relates entanglement between
spacetime regions in the field theory to the existence of
minimal surfaces in the bulk, a situation often described by
the slogan “entanglement ¼ geometry.”
Recently it has been suggested that entanglement may

not be sufficient to fully describe physics in extreme
regimes, such as the late-time dynamics of black holes
[5,6], and that instead complexity of a dual CFT state
provides information that entanglement does not. Roughly
speaking, complexity provides a measure of how difficult
it is to construct certain states in the theory starting from
simple unentangled states using a fixed set of universal
gates. While well established in quantummechanics, circuit
complexity in quantum field theory is an area of active
investigation, and there remains much to understand about
its role in the holographic dictionary [7,8]. There have
been a number of proposals suggesting how the complexity
of the field theory state should be expressed in terms of
bulk observables. The two most well studied of these
proposals are the “complexity ¼ volume” (CV) [9] and
“complexity ¼ action” (CA) [10,11] conjectures. The

former relates complexity to the volume of extremal
codimension-one surfaces in the bulk, while the latter
relates complexity to the value of the gravitational action
on a region of spacetime known as the Wheeler-DeWitt
(WDW) patch [12].
A number of properties of complexity as defined by the

CV and CA proposals are now well-understood for black
holes, with both proposals generally yielding qualitatively
similar results, but not always [13–20]. For example, in
both proposals it is known that at late times the complexity
grows linearly in time at a rate characterized by the mass,
or other thermodynamic potentials, of the black hole
[11,21–24]. In both proposals the response of complexity
to perturbations follows the “switchback effect” [16,25].
Most relevant for us here is the finding of Ref. [7] (see also
Ref. [23]) that in both proposals the complexity of for-
mation of large, (un)charged static, and spherically sym-
metric black holes is proportional to the black hole entropy.
Here we report on the first investigation of complexity

for rotating black holes. From a holographic perspective,
rotating black holes are dual to thermofield double states
living on a rotating spacetime [26–28]. However, our main
motivation here is to exploit the more complicated geo-
metric structure of rotating black holes to test the complex-
ity proposals for universal and divergent features that may
not be evident in simpler geometries. The approach of
understanding the behavior of an observable under defor-
mations of the state or theory (e.g., through the addition of
higher-curvature terms in the action) has been a fruitful line
of investigation for identifying universal relationships and
testing conjectures in the context of AdS=CFT [29–34].
We shall exploit the observation that the causal structure

of a class of odd-dimensional rotating black holes is far
simpler than the general situation. This allows for
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computations that would be effectively intractable in the
general situation to be carried out largely analytically.
Remarkably we find a connection between the complexity
of formation and the thermodynamic volume V of the black
hole, indicating that it is this quantity and not the entropy
that governs its behavior in both the CVand CA proposals.
In the static limit, we recover previously known results.
Thermodynamic volume is a quantity that arises natu-

rally when generalizing the Komar definition of mass from
asymptotically flat spacetimes to those with (A)dS asymp-
totics and plays a central role in extending Smarr’s formula
from flat spacetimes to AdS spacetimes [35,36]. This
extended Smarr relation reads

ðD − 3ÞM ¼ ðD − 2ÞTSþ ðD − 2ÞΩiJi þ
ΛV
4πGN

; ð1Þ

where D is the spacetime dimension, T is the Hawking
temperature, S is the entropy, Ωi are the horizon angular
velocities, Ji are the independent angular momenta, Λ≡
−ðD − 1ÞðD − 2Þ=2l2 is the cosmological constant, and l
is the AdS length scale. If one allows for variations in the
cosmological constant, the thermodynamic volume appears
as the conjugate quantity to variations in Λ:

δM ¼ TδSþ ΩiδJi −
VδΛ
8πGN

: ð2Þ

Interpreting P≡ −Λ=ð8πGNÞ as a pressure, the form of the
first law appearing above identifies the mass as the enthalpy
of spacetime, rather than the internal energy. In general
S and V are independent quantities [36], but in certain cases
(for example Reissner-Nordstrom-AdS) they both depend
on a single parameter, with S ∼ VðD−2Þ=ðD−1Þ. The impli-
cations of the thermodynamic volume have been exten-
sively explored in the gravitational context—see Ref. [37]
for a recent review—but its role in holography remains
comparatively unexplored (though see Refs. [38–45] for
progress on this front).
There have been already a number of attempts to connect

thermodynamic volume to the idea of complexity. There
is a sense in which this is natural—in many situations
the thermodynamic volume is related to the spacetime
volume inside the black hole [36,46], which is precisely
what complexity is designed to probe. However, these
investigations have either invoked new proposals for
complexity [47,48], or reexpressed known results in terms
of the thermodynamic volume for interpretational reasons
[22,49,50]. Our result is the first to show concretely that
thermodynamic volume emerges naturally and unambigu-
ously in both the original CV and CA proposals in a way
wholly distinct from entropy.
Solutions and global structure.—The Myers-Perry-AdS

black hole solutions in D ¼ 2N þ 3 odd dimensions are
characterized by their mass and N þ 1 independent angular

momenta Ji [51]. In the special case where all angular
momenta are equal, considerable simplification occurs. The
metric depends only on the radial coordinate and the line
element reads [52]

ds2 ¼ −fðrÞ2dt2 þ gðrÞ2dr2 þ hðrÞ2½dψ þ A −ΩðrÞdt�2
þ r2ĝabdxadxb ð3Þ

where

gðrÞ2 ¼
�
1þ r2

l2
−
2mΞ
r2N

þ 2ma2

r2Nþ2

�−1
;

hðrÞ2 ¼ r2
�
1þ 2ma2

r2Nþ2

�
; ΩðrÞ ¼ 2ma

r2Nh2
; ð4Þ

and

fðrÞ ¼ r
gðrÞhðrÞ ; Ξ ¼ 1 −

a2

l2
: ð5Þ

The metric ĝ is the Fubini-Study metric on CPN with
curvature normalized so that R̂ij ¼ 2ðN þ 1Þĝij and A is a
1-form onCPN that satisfies dA ¼ 2J where J is the Kähler
form. The basic example is in D ¼ 5, in which case N ¼ 1

and we have CP1 ≅ S2 with the metric

ĝ ¼ 1

4
ðdθ2 þ sin2θdϕ2Þ; A ¼ 1

2
cos θdϕ: ð6Þ

The asymptotic region is obtained in the limit r → ∞,
where we recover the usual AdS2Nþ3 metric provided we
periodically identify ψ ∼ ψ þ 2π.
The spacetime contains a horizon at r ¼ rþ where rþ is

the largest root of g−2ðrþÞ ¼ 0. The hypersurface r ¼ rþ is
a smooth Killing horizon with null generator

ξ ¼ ∂
∂tþΩH

∂
∂ψ ; ΩH ¼ 2ma

r2Nþ2
þ þ 2ma2

: ð7Þ

There is also an inner Cauchy horizon at r ¼ r− which is
the smaller of the two positive real roots of g−2ðrÞ.
The conserved charges corresponding to mass and

angular momentum are [51,53]

M ¼ Ω2Nþ1m
4πGN

�
N þ 1

2
þ a2

2l2

�
; J ¼ Ω2Nþ1

4πGN
ðN þ 1Þma;

ð8Þ

whereΩ2Nþ1 ¼ 2πNþ1=ΓðN þ 1Þ is the area of a unit 2N þ
1 sphere. We emphasize that the single angular momentum
J corresponds to equal angular momenta Ji ¼ J=ðN þ 1Þ
in each of the N þ 1-orthogonal planes of rotation. The
black hole’s entropy and temperature are given by
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S ¼ Ω2Nþ1hðrþÞr2Nþ
4GN

;

T ¼ 1

2πhðrþÞ
�
ðN þ 1Þ

�
1þ r2þ

l2

�
−

l2r2þ
ðr2þ − a2Þl2 − r2þa2

�
;

ð9Þ

while the thermodynamic volume is [54]

V ¼ r2ðNþ1Þ
þ Ω2Nþ1

2ðN þ 1Þ þ 4πaJ
ð2N þ 1ÞðN þ 1Þ : ð10Þ

Note in particular that the entropy and thermodynamic
volume are independent functions of rþ and r− (or m and
a). Within the framework of extended thermodynamics, the
thermodynamic volume is conjugate to the pressure

P ¼ −
Λ

8πGN
¼ ðN þ 1Þð2N þ 1Þ

8πl2GN
: ð11Þ

These thermodynamic quantities satisfy the extended
Smarr relation Eq. (1) and first law Eq. (2).
The entropy presents two different scaling regimes,

depending on whether the black hole is close to extremality
or close to the static limit. For large black holes these
regimes are characterized by the scaling

S ∼
r−
rþ→0

�
rþ
l

�
2Nþ1

and S ∼
r−
rþ→1

�
rþ
l

�
2Nþ2

: ð12Þ

This should be contrasted with the scaling of V in the same
regimes, which satisfies

V ∼
r−
rþ→0

�
rþ
l

�
2Nþ2

and V ∼
r−
rþ→1

�
rþ
l

�
2Nþ4

: ð13Þ

In the static limit r−=rþ → 0 the scaling of the entropy and
volume is related by S ∼ VðD−2Þ=ðD−1Þ, the same relationship
that holds generally for the Schwarzschild-AdS and
Riessner-Nordström-AdS black holes.
Because of the enhanced symmetry of the equal-spinning

solution, its causal structure is qualitatively similar to that
of the Riessner-Nordström-AdS solution, as can be con-
firmed by an analysis of the light cone structure [55,56].
Unlike the general situation for rotating black holes
where r ¼ 0 represents a “ring singularity” that can be
traversed, the timelike surface r ¼ 0 in these metrics is
totally singular. We show in Fig. 1 a Penrose diagram for
the spacetime, including also the WDW patch.
Complexity equals volume.—Let us consider now the

complexity of formation within the CV proposal.
According to the CV proposal, the complexity of a holo-
graphic state at the boundary time slice ϒ is related to the
volume of an extremal codimension-one slice B by

CVðϒÞ ¼ max
ϒ¼∂B

�
VðBÞ
GNR

�
; ð14Þ

where R is an arbitrary length scale. Since we are interested
in the complexity of formation, we consider the t ¼ 0 time
slice of the boundary and subtract from this the analogous
result for the AdS vacuum.
We take as coordinates on a codimension-one surface

ðλ; Ω⃗Þ where Ω⃗ denotes the angular coordinates of the
metric. Writing the metric in ingoing coordinates ðr; vÞ and
parameterizing r ¼ rðλÞ and v ¼ vðλÞ [57], it is straight-
forward to show that the volume functional is

V ¼ 2ΩD−2

Z
dλhðrÞrD−3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrÞ2 _v2 þ 2gðrÞfðrÞ _v _r

q
:

ð15Þ

Stationary points of this functional represent surfaces of
extremal volume, while the volume of those surfaces is then
obtained by evaluating Eq. (15) on shell. Straight-forward
computations [58] allow us to deduce that

V ¼ 2ΩD−2

Z
rmax

rþ
drrðD−3ÞhðrÞgðrÞ; ð16Þ

for the t ¼ 0 time slice. Here the integration is cutoff at
some large but finite value rmax. The complexity of
formation is obtained by subtracting from Eq. (16) the
analogous volume for two copies of the AdS vacuum [59]:

VAdS ¼ ΩD−2

Z
rmax

0

dr
rD−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2=l2
p ; ð17Þ

FIG. 1. A Penrose diagram for the equal-spinning Myers-Perry-
AdS spacetime. The shaded green region represents the WDW
patch. The full diagram is an infinite strip comprised of an infinite
repetition of the segment shown here.
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and then taking the limit rmax → ∞. This yields

ΔCV ¼ lim
rmax→∞

½V − 2VAdS�
GNR

: ð18Þ

To understand the behavior of ΔCV for large black holes,
we plot it as a function of r−=rþ in Fig. 2 in D ¼ 5
for several different values of rþ=l. As extremality is
approached, the complexity of formation exhibits a loga-
rthmic divergence [58], similar to what occurs for charged
black holes [23]. In the plot, we have normalized ΔCV
taking into account this divergence, and have also normal-
ized by the thermodynamic volume to an appropriate
power. While the plot shows the curve for seven distinct
values of rþ=l, only three curves are actually distinguish-
able. This illustrates that, for large black holes, the scaling
of the complexity of formation with rþ=l matches the
scaling of the thermodynamic volume.
This scaling result is not peculiar to five-dimensional

black holes, but in fact holds for any (odd) dimension. To
see this we have determined numerically the scaling ofΔCV
near extremality [60] in a number of higher odd dimen-
sions, shown in Table I. In all cases we see that the scaling
matches precisely that derived from VðD−2Þ=ðD−1Þ.
We thus find the intriguing result that the complexity of

formation scales as VðD−2Þ=ðD−1Þ, capturing two distinct
scaling behaviors in the static and near-extremal limits as in
Eq. (13). Interestingly this power is the same power that
relates the entropy [Eq. (9)] to thermodynamic volume
[Eq. (10)] in the static solutions. However, while this means
the scaling can be expressed in terms of either S or
VðD−2Þ=ðD−1Þ near r−=rþ → 0, it is only the volume that
captures the correct scaling behavior for all values of
r−=rþ—see Eqs. (12) and (13).

Complexity equals action.—We have now demonstrated
that in the CV proposal it is the thermodynamic volume and
not the entropy that characterizes the complexity of for-
mation for large black holes. It is natural to ask whether this
behavior is universal to both complexity proposals, or if it is
a peculiar behavior associated with the CV proposal. Here
we show that the same feature emerges for the CA proposal.
In the CA proposal, the complexity of the CFT state at

boundary time t is given by the value of the gravitational
action evaluated on the WDW patch of spacetime

CAðϒÞ ¼ IWDW

π
: ð19Þ

TheWDW patch is defined as the domain of dependence of
the bulk Cauchy slice that intersects the boundary at the
given time slice ϒ. The geometry of this patch for the
rotating black holes is shown in Fig. 1. There are a number
of nontrivial contributions to the action arising in this
computation, including joint contributions at the future and
past meeting points of the null sheets of the WDW patch,
joint and boundary terms at the regularization of the patch
near infinity, and a null boundary counterterm along the
null sheets of theWDWpatch. A full account of these terms
will be presented elsewhere [58], but it suffices to say that
the computation is morally similar to the case of charged
black holes [23].
The result of this analysis is that the complexity of

formation in the CA proposal is given by

ΔCA ¼ IWDW − 2IAdS
π

ð20Þ

with

FIG. 2. A plot showing the CV complexity of formation
normalized by the thermodynamic volume as a function of the
ratio r−=rþ in five dimensions. The plot shows curves for fixed
rþ=l ¼ 10; 102; 103; 104; 105; 106, and 107, however after
rþ=l ¼ 1000 the curves are visually indistinguishable.

TABLE I. Table comparing scaling of ΔCV with the scaling of
the thermodynamic volume VðD−2Þ=ðD−1Þ for large rþ=l. TheΔCV
data is obtained numerically by evaluating the complexity of
formation between rþ=l ¼ 1010 and rþ=l ¼ 1020 and we work
close to extremality with r−=rþ ¼ 1–10−10.

Dimension β such that ΔCV ∼ ðrþ=lÞβ VðD−2Þ=ðD−1Þ

5 4.50000 9=2 ¼ 4.5
7 6.66667 20=3 ≈ 6.66667
9 8.75000 35=4 ¼ 8.75
11 10.80000 54=5 ¼ 10.8
13 12.83333 77=6 ≈ 12.83333
15 14.85714 104=7 ≈ 14.85714
17 16.87500 135=8 ≈ 16.87500
19 18.88889 170=9 ≈ 18.88889
21 20.90000 209=10 ¼ 20.9
23 22.90909 252=11 ≈ 22.90909
25 24.91667 299=12 ≈ 24.91667
27 26.92308 350=13 ≈ 26.92308
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πΔCA ¼ ΛΩ2Nþ1

2ðN þ 1Þð2N þ 1ÞπGN

�Z
∞

rm0

drr2Nþ1

�
gðrÞ2hðrÞ − r

1þ r2=l2

�
−
Z

rm0

0

dr
r2ðNþ1Þ

1þ r2=l2

�
−
Ω2Nþ1ðrm0

Þ2Nþ1

2πGNð2N þ 1Þ

−
Ω2Nþ1

4πGN
ðrm0

Þ2Nhðrm0
Þ logl2

ctΘðrm0
Þ2jfðrm0

Þ2j − Ω2Nþ1

2πGN

Z
∞

rm0

drr2N
�
hðrÞΘ

0

Θ
þ 1

�
ð21Þ

where

Θ ¼ 1

fðrÞgðrÞ
�
2N
r

þ h0

h

�
: ð22Þ

Here the constant lct comes from a counterterm on the null
boundaries. Such a term is not required for a well-posed
variational problem, but is required to ensure the final
result does not depend on the parameterization of the null
generators of the WDW patch [61], and moreover has been
shown to be important for reproducing certain required
properties of complexity in some situations [16,25,62,63].
The parameter rm0

is the value of r at which the future and
past tips of the WDW patch meet. It is determined by
solving the equation r�ðrm0

Þ ¼ 0 where

r�ðrÞ ¼
Z

r

∞

g2ðr̃Þhðr̃Þ
r̃

dr̃ ð23Þ

is the tortoise coordinate.
The most difficult part of the CA computation is the

determination of rm0
. In some instances, particularly in the

limit r−=rþ → 0, accurate determination of this para-
meter requires hundreds of digits of precision in the
numerics. This technicality has limited our ability to probe
the behavior of the complexity of formation within the CA

conjecture as broadly as the CV conjecture. However, we
show in Fig. 3 the result of the action computation in five
dimensions. The plot makes clear that the thermodynamic
volume controls the scaling of ΔCA for large black holes,
just as in the CV conjecture. While it was possible to
compute the behavior in various higher dimensions for
the CV case, this is more difficult in the CA scenario.
Nonetheless, we have confirmed the scaling with thermo-
dynamic volume in seven dimensions, which suggests the
same trend holds in general for CA.
Discussion.—We have shown here for the first time that

the thermodynamic volume plays a natural role in both the
CA and CV conjectures. Reinstating units, the complexity
of formation of large black holes obeys the same scaling as
the thermodynamic volume

ΔC ¼ ΣgCT

�
V

VAdS

�D−2
D−1 ð24Þ

where VAdS ¼ lD−1, Σg is a factor that depends on the
specific metric, dimension, etc. but not on the size of the
black hole, and CT ∼ lD−2=GN is the central charge of
the CFT.
This proposal reproduces known results for static black

holes, as in those cases the thermodynamic volume is not
independent from the entropy, S ∼ VðD−2Þ=ðD−1Þ, and the
above can be recast in terms of the entropy in those cases.
However, for rotating black holes the volume and entropy
are independent and it becomes clear that it is Eq. (24) that
captures the correct behavior, and not an analogous
expression involving the entropy. Our result also reprodu-
ces the behavior of the complexity of formation for
gravitational solitons [20], which are horizonless geom-
etries that possess thermodynamic volume but no entropy.
The thermodynamic volume has been conjectured [36] to

obey a “reverse” isoperimetric inequality:

R≡
�ðD − 1ÞV

ΩD−2

�
1=ðD−1Þ�ΩD−2

4GNS

�
1=ðD−2Þ

≥ 1: ð25Þ

The inequality is saturated by (charged) Schwarzschild-
AdS spacetimes. Assuming the relationship [Eq. (24)] is
general, the reverse isoperimetric inequality becomes the
statement

ΔC ≥ βDS ð26Þ

FIG. 3. A plot showing the CA complexity of formation
normalized by the thermodynamic volume as a function of the
ratio r−=rþ in five dimensions. The plot shows curves for fixed
rþ=l ¼ 10; 102; 103; 104; 105; 106, and 107, however after
rþ=l ¼ 1000 the curves are visually indistinguishable. Here
we have set lct ¼ l.
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where βD is a positive constant that can be easily worked
out from the above. This means that the complexity of
formation for large black holes is bounded from below
by the entropy (equivalently, the number of degrees of
freedom).
What we have said so far concerns the complexity of

formation. Before closing, let us remark that there is also a
connection between the late time growth of complexity and
thermodynamic volume, again for large black holes. For the
rotating black holes considered here this relationship works
out to be [58]

_C ¼ NA;VPΔV ð27Þ

where ΔV is the difference between the thermodynamic
volumes of the inner and outer horizons and NA;V is a
proportionality constant whose numeric value depends on
whether one uses the CVor CA conjecture. The implication
of this is that not only does the thermodynamic volume
control the complexity of formation, but we see here that it
also controls the late-time growth.
Our results for the complexity of formation draw a clear

and simple connection between thermodynamic volume
and holographic complexity. A better understanding of
complexity in the holographic dictionary would then lead
to a simple and direct holographic interpretation of thermo-
dynamic volume and vice versa. Going forward, it will be
important to assess the validity of our proposal, Eq. (24), as
broadly as possible. Exploring the properties of complexity
of formation in other spacetimes where S and V are
independent would contribute additional evidence toward
the generality of the relationship, or could constitute a
counterexample from which its possible limitations could
be assessed.
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