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We establish the status of the Weyl double copy relation for radiative solutions of the vacuum Einstein
equations. We show that all type N vacuum solutions, which describe the radiation region of isolated
gravitational systems with appropriate falloff for the matter fields, admit a degenerate Maxwell field that
squares to give the Weyl tensor. The converse statement also holds, i.e., if there exists a degenerate Maxwell
field on a curved background, then the background is type N. This relation defines a scalar that satisfies the
wave equation on the background. We show that for nontwisting radiative solutions, the Maxwell field and
the scalar also satisfy the Maxwell equation and the wave equation on Minkowski spacetime. Hence,
nontwisting solutions have a straightforward double copy interpretation.
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The discovery of gravitational waves [1] one-hundred
years after Einstein formulated his general theory of
relativity has led to an exciting new area of gravitational
physics with possible important prospects for observational
astrophysics; a development that has been anticipated
eagerly for half a century [2]. An important theoretical
breakthrough in this direction will include an efficient and
cost-effective method of generating gravitational wave
templates; waveforms computed from the theory to be
compared with observed waveforms [3,4]; see Refs. [5–10]
for recent reviews. Among the myriad approaches proposed
to facilitate the easier and less time-consuming generation
of templates is one [11,12] based on techniques adapted
from string theory and supergravity scattering amplitude
calculations, in particular the double copy method [13–16],
which describes gravitational amplitudes as a kind of inner
product of gauge theory amplitudes (hence “double copy”).
While initially found at the level of scattering amplitude

relations, the double copy also exists at the level of classical

solutions, including beyond perturbation theory for certain
classes of spacetimes. One class of solutions for which a
double copy relation exists is (multi) Kerr-Schild solutions,
which can be thought of as exact perturbative (around
Minkowski) gravitational solutions [17,18]. The correspon-
dence between the double copy relations for scattering
amplitudes and for classical solutions has been verified in
various works [19–26]; see Refs. [27,28] for earlier ideas in
this direction. Of particular interest in the present Letter is
the Weyl double copy relation that exists for vacuum
type D solutions and pp waves [29–31]. This relation
is best expressed in spinor language [32]. In the type
D case, it can be shown that the Weyl spinor ΨABCD ¼
ð−2Φ2Þ−1=4ΦðABΦCDÞ with ΦAB a nondegenerate Maxwell
spinor and Φ2 ≡ΦABΦAB. Of particular significance is the
fact that the Maxwell spinor also solves the Maxwell
equation on Minkowski spacetime [31]. Furthermore,
Φ1=2 solves the wave equation on Minkowski spacetime.
What lies behind these relations is the existence of the well-
known hidden symmetry for type D vacuum solutions as
expressed by the existence of a Killing 2-spinor [29,33].
See Refs. [34–49] for related works.
In this Letter, we extend the curved Weyl double copy

relation to all type N vacuum solutions, which describe
the radiation region of isolated gravitational systems. In
particular, we show that ΨABCD ¼ S−1ΦðABΦCDÞ with ΦAB
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a degenerate Maxwell spinor and S some scalar that, in
particular, satisfies the wave equation on the curved back-
ground. For nontwisting radiative spacetimes, the Maxwell
field and the scalar field also solve the Maxwell equation
and the wave equation, respectively, on Minkowski space-
time. This establishes the Weyl double copy in the sense of
Ref. [31] for this large class of spacetimes. Notice that,
while the double copy for scattering amplitudes involves
two copies of non-Abelian gauge theory, the first step in
that procedure is to consider the double copy of the
asymptotic states, which for linearized gauge theory are
solutions to the Maxwell equation. The fact that certain
exact gravity solutions can be interpreted as a double copy
of a Maxwell field means that they should be interpreted
as coherent states, an exact extension of the linearized
asymptotic states in scattering amplitudes. For twisting
spacetimes, the Maxwell field and the scalar depend
generically on the metric functions. Hence, they are
solutions only on the curved spacetime. However, the
standard double copy interpretation applies at the linearized
level. This may be indicative of the fact that twisting
solutions have an intrinsic non-Abelian nature.
As a necessary step in extending the exact classical

double copy tools to gravitational wave physics, we
provide a systematic understanding of the status of the
double copy for radiative solutions, beyond the most
special example of pp waves. This study reveals interesting
differences with the Weyl double copy for typeD solutions.
In particular, the construction does not lead to a unique
Maxwell field, since there is functional freedom associated
with the scalar S. In the cases where the Maxwell field
can be thought of as living in Minkowski spacetime, i.e.,
for nontwisting solutions, it would be interesting to use
novel approaches, e.g., Refs. [50–52], to relate this new
construction to the double copy for scattering amplitudes,
as has been done for certain type D solutions.
Spinor calculus.—The homomorphism between the

Lorentz group and SLð2;CÞ can be used to convert
spacetime indices μ; ν;… into spinor A;B;… ¼ f1; 2g
and conjugate spinor _A; _B;… ¼ f1; 2g indices, using the
Van der Waerden matrices σμ

A _A
, which are constructed from

the identity and Pauli matrices. It is convenient to work in a
spinor basis foA; ιAg with ϵABoAιB ¼ 1. In this basis,
ϵAB ¼ 2o½AιB� and can be used to lower indices
ψA ¼ ψBϵBA. Similarly, ψA ¼ ϵABψB. Associated with
the spin basis is a null frame ðl; n; m; m̄Þ [53], so that

gμν ¼ 2lðμnνÞ þ 2mðμm̄νÞ: ð1Þ

Our notation follows Ref. [54]. For a vacuum spacetime,
the curvature is given by the Weyl tensor. Its spinorial
version is fully determined by the totally symmetric Weyl
spinor ΨABCD (and its complex conjugate), which satisfies
the Bianchi identity

∇A _AΨABCD ¼ 0: ð2Þ

Similarly, a solution of the Maxwell equation can be written
in terms of a symmetric 2-spinor ΦAB that solves

∇A _AΦAB ¼ 0: ð3Þ

For type N solutions, choosing a spinor basis adapted to the
principal null direction (PND) lμ ∼ oAō _A, the Newman-
Penrose (NP) Weyl scalars, which correspond to various
components of the Weyl spinor in the spinor basis, all
vanish except Ψ4 ¼ ΨABCDι

AιBιCιD ¼ nμm̄νnρm̄σCμνρσ and
the Weyl spinor takes the simple form

ΨABCD ¼ Ψ4oAoBoCoD: ð4Þ

Weyl double copy.—In spinor language, the curved
background Weyl double copy relation is

ΨABCD ¼ 1

S
ΦðABΦCDÞ; ð5Þ

for some scalar S and Maxwell spinor ΦAB. Note that ΦAB
satisfies the Maxwell equation (3) in the fixed curved
background metric, but it is viewed as a test field that does
not backreact on the geometry. From Eq. (4), it follows that
the NP Maxwell scalars all vanish except Φ2, and we have
ΦAB ¼ Φ2oðAoBÞ. Thus the type N double copy relation is

Ψ4 ¼
1

S
ðΦ2Þ2: ð6Þ

The Maxwell 2-spinor is degenerate, which means that the
electromagnetic field is null, i.e., the electric and magnetic
fields are perpendicular and of equal magnitude. An
example of a null electromagnetic field is that of a plane
electromagnetic wave in flat spacetime. Now we must
consider whether such a relation [14] exists. Expanding out
the Bianchi identity (2) by substituting (4) gives two
equations:

oA∇A _A logΨ4 þ 4oAιB∇A _AoB − ιAoB∇A _AoB ¼ 0 ð7Þ

and oAoB∇A _AoB ¼ 0. The second equation is equivalent to
the statement that the null congruence generated by the
PND is geodesic, κ ¼ 0, and shear-free, σ ¼ 0 [55], which
follow from the Goldberg-Sachs theorem [56]. Expanding
out the Maxwell equation in a similar fashion gives

oA∇A _A logΦ2 þ 2oAιB∇A _AoB − ιAoB∇A _AoB ¼ 0; ð8Þ

as well as the same equation above that is equivalent to
κ ¼ σ ¼ 0. Now, substituting Ψ4 ¼ ðΦ2Þ2=S into (7) and
simplifying this using (8) gives
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oA∇A _A logS − ιAoB∇A _AoB ¼ 0: ð9Þ

There is a clear structure in Eqs. (7)–(9), where the
coefficient of the middle term is the rank of the respective
spinor. Equation (9) translates, using ō _A and ῑ _A, to

l ·∇ log S − ρ ¼ 0; m · ∇ log S − τ ¼ 0; ð10Þ

where ρ and τ are NP spin coefficients [57]. ρ parametrizes
the expansion and twist of the null congruence generated by
l, while τ parametrizes the transport of l along the flow
generated by n. A simple calculation shows that the
integrability condition on Eqs. (10) is satisfied, which
means that they are simple integral equations that can
always be solved. Thus, we are guaranteed the existence of
a scalar S satisfying these equations, which then gives a
Maxwell field Φ2 ¼

ffiffiffiffiffiffiffiffiffi
Ψ4S

p
. In tensor language, this

Maxwell spinor translates to a field strength (called the
“single copy”) of the form

F ¼ Φ2l♭ ∧ m♭ þ Φ̄2l♭ ∧ m̄♭; ð11Þ

where l♭ denotes the 1-form l♭ ¼ lμdxμ, and similarly for
m♭ and m̄♭. This establishes the curved Weyl double copy
for type N vacuum solutions.
Furthermore, it is simple to show using Eq. (9) that S

solves the wave equation

□S ¼ ∇A _A∇A _AS ¼ 2oAιB∇A
_A∇B _AS ¼ 0: ð12Þ

The real scalar field in the double copy construction (called
the “zeroth copy”) is the real part of S.
These results mirror those that exist for typeD solutions.

In order to investigate whether the Maxwell field and the
scalar field also satisfy the equations of motion on
Minkowski spacetime, we investigate the different classes
of type N solutions in turn.
Type N vacuum solutions.—Type N vacuum solutions

are classified in terms of the optical properties of the
congruence generated by the PND, i.e., by the values of the
optical scalars; see, e.g., Ref. [54]. We have κ ¼ σ ¼ 0, as
mentioned before; the properties that remain are para-
metrized by the spin coefficient ρ ¼ −ðΘþ iωÞ, where Θ
denotes the expansion of the congruence and ω denotes its
twist. The different cases lead to three distinct classes of
solutions: (i) Kundt solutions: Θ ¼ 0, which implies that
ω ¼ 0 [58]. (ii) Robinson-Trautman solutions: Θ ≠ 0;
ω ¼ 0. (iii) Twisting solutions: Θ ≠ 0;ω ≠ 0. Choosing
a null frame for which l is the PND, so that Ψ0 ¼ Ψ1 ¼
Ψ2 ¼ Ψ3 ¼ 0, we consider each case separately.
Kundt solutions.—There are two kinds of type N Kundt

solutions, both corresponding to plane-fronted wave sol-
utions [59]. Plane-fronted waves with parallel propagation
(pp waves) are given by the metric

ds2 ¼ −2duðdvþHduÞ þ 2dzdz̄; ð13Þ

with Hðu; z; z̄Þ ¼ fðu; zÞ þ f̄ðu; z̄Þ for general functions f.
Choosing

l ¼ ∂v; n ¼ ∂u −H∂v; m ¼ ∂z; ð14Þ

one has ρ ¼ τ ¼ 0 and so Eq. (10) implies S ¼ Sðu; z̄Þ,
while the Weyl scalar Ψ4 ¼ ∂2

z̄ f̄, so Eq. (6) implies that

Φ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2
z̄ f̄Sðu; z̄Þ

q
: ð15Þ

The other class of plane-fronted waves is given by

ds2 ¼ −2duðdvþWdzþ W̄dz̄þHduÞ þ 2dzdz̄; ð16Þ

with Wðv; z; z̄Þ ¼ −2vðzþ z̄Þ−1 and

Hðu; v; z; z̄Þ ¼ ½fðu; zÞ þ f̄ðu; z̄Þ�ðzþ z̄Þ − v2

ðzþ z̄Þ2 ;

again fðu; zÞ is arbitrary. Choosing

l ¼ ∂v; n ¼ ∂u − ðH þWW̄Þ∂v þ W̄∂z þW∂ z̄; m ¼ ∂z;

one has ρ ¼ 0, τ ¼ 2β ¼ −ðzþ z̄Þ−1, so Eq. (10) gives
S ¼ ζðu; z̄Þ=ðzþ z̄Þ. The Weyl scalar Ψ4 ¼ ðzþ z̄Þ∂2

z̄ f̄, so
Eq. (6) implies that

Φ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2
z̄ f̄ζðu; z̄Þ

q
: ð17Þ

Given that the only nonzero components of Fμν are for
μν ¼ ½uz� and ½uz̄�, the simple form of the relevant
components of gμν and the fact that g ¼ 1 give

∇νFμν ¼ 1ffiffiffiffiffijgjp ∂νð
ffiffiffiffiffi
jgj

p
gμρgνσFρσÞ

¼ ∂νðημρηνσFρσÞ ¼ 0: ð18Þ

On the other hand, S does not depend on fðu; zÞ or f̄ðu; z̄Þ,
meaning that it must solve the wave equation on any
member of the family. In particular, it solves the wave
equation on Minkowski spacetime. This implies that the
Maxwell and the scalar fields also satisfy their equations on
Minkowski spacetime, establishing the Weyl double copy
for type N Kundt solutions.
Robinson-Trautman solutions.—Type N Robinson-

Trautman solutions take the form [60]

ds2 ¼ −Hdu2 − 2dudrþ 2r2

P2
dzdz̄; ð19Þ

with Hðu; r; z; z̄Þ ¼ k − 2r∂u logP (where k ¼ 0;�1) and
2P2∂z∂ z̄ logPðu; z; z̄Þ ¼ k. Choosing
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l ¼ ∂r; n ¼ ∂u −
1

2
H∂r; m ¼ −

P
r
∂z; ð20Þ

one has ρ ¼ −r−1; τ ¼ 0, so Eq. (10) gives S ¼ −ζðu; z̄Þ=r.
Now Ψ4 ¼ −ðP2=rÞ∂uð∂2

z̄P=PÞ, so Eq. (6) determines that

Φ2 ¼
P
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζðu; z̄Þ∂uð∂2

z̄P=PÞ
q

: ð21Þ

As an example, consider Robinson-Trautman solutions
with k ¼ 0 in Eq. (19). Writing P ¼ eW we have ∂z∂ z̄W ¼
0 and hence W ¼ wðu; zÞ þ w̄ðu; z̄Þ, implying that
Ψ4 ¼ −P2=r∂u½∂2

z̄ w̄ðu; z̄Þ þ ð∂ z̄w̄ðu; z̄Þ2�. We can obtain
type N solutions of the Maxwell equation in the
Robinson-Trautman background by taking

A ¼ γðu; z; z̄Þdu; ð22Þ

where ∂z∂ z̄γ ¼ 0 and hence γ ¼ hðu; zÞ þ h̄ðu; z̄Þ. Thus
from Eq. (11) we have Φ2 ¼ −P=r∂ z̄h̄ðu; z̄Þ. Plugging into
Eq. (6) we have

∂u½∂2
z̄ w̄ðu; z̄Þ þ ½∂ z̄w̄ðu; z̄Þ�2� ¼ −

1

rS
½∂ z̄h̄ðu; z̄Þ�2; ð23Þ

and so indeed we have that S ¼ −ζ=r, where ζ is a function
only of u and z̄, as required in the general result stated
above.
As with Kundt solutions, the only nonzero components

of Fμν are for μν ¼ ½uz� and ½uz̄�. As before, using the fact
that

ffiffiffiffiffijgjp ¼ r2=P2 and the relevant components of gμν, it
can be shown that Eq. (18) holds. Once again, S is
independent of P and solves the wave equation on any
member of the family (19), including Minkowski. Hence,
both Fμν and S satisfy their equations also on the flat
background, establishing the Weyl double copy for
Robinson-Trautman solutions.
Twisting solutions.—Type N solutions with nonvanish-

ing twist are more complicated, with only one explicit
solution known [61]. The general metric is given by [62]

ds2 ¼ −2ðduþLdzþ L̄dz̄Þ½drþWdzþ W̄dz̄

þHðduþLdzþ L̄dz̄Þ� þ 2

P2jρj2 dzdz̄;

ρ−1 ¼ −ðrþ iΣÞ; 2iΣðu; z; z̄Þ ¼ P2ð∂̄L− ∂L̄Þ;
Wðu; r; z; z̄Þ ¼ ρ−1∂uLþ i∂Σ; ∂ ¼ ∂z −L∂u;

Hðu; r; z; z̄Þ ¼ 1

2
K − r∂u logP; ð24Þ

with K ¼ 2P2ℜ½∂ð∂̄ logP − ∂uL̄Þ�. There exists a residual
gauge freedom to choose P ¼ 1, but we shall not yet
impose this choice. The solution is determined by the
complex scalar L, which satisfies

ΣK þ P2ℜ½∂∂̄Σ − 2∂uL̄∂Σ − Σ∂u∂L̄� ¼ 0; ∂I ¼ 0;

and ∂uI ≠ 0, with I¼ ∂̄ð∂̄ logP−∂uL̄Þþð∂̄ logP−∂uL̄Þ2.
Choosing

l ¼ ∂r; n ¼ ∂u −H∂r; m ¼ −Pρ̄ð∂ −W∂rÞ; ð25Þ

ρ is as defined above, while τ ¼ 0. Equation (10) then
implies that S ¼ ρχðu; z; z̄Þ, with χ satisfying

∂χ − ∂uLχ ¼ 0: ð26Þ

Defining new coordinates ðv; wÞ ¼ ðI; zÞ, the above equa-
tion can be solved using the method of characteristics
(I ¼ constant correspond to the characteristics)

χðv; wÞ ¼ ζðIÞe
R

½ð∂Iðu;zÞ∂u Þðv;w0Þ×∂Lðv;w0Þ
∂v �dw0

; ð27Þ

with ζðIÞ arbitrary. The Weyl scalar Ψ4 ¼ ρP2∂uI, and so
Eq. (6) implies

Φ2 ¼ ρP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂uIχðu; z; z̄Þ

p
: ð28Þ

Only one twisting typeN solution, found by Hauser [61],
is known explicitly. The metric functions are given by

P ¼ ðzþ z̄Þ3=2fðtÞ; t≡ u
ðzþ z̄Þ2 ; L ¼ 2iðzþ z̄Þ;

where f satisfies 16ð1þ t2Þf00ðtÞ þ 3fðtÞ ¼ 0, which is a
hypergeometric equation, and I turns out to be given by

I ¼ 3

2½ðzþ z̄Þ2 − iu� : ð29Þ

The solution to Eq. (10) is

S ¼ ρζðIÞ; ð30Þ

where ζðIÞ is arbitrary. As expected, this is consistent
with the general result (27). The Weyl scalar is Ψ4 ¼
ð2i=3ÞρP2I2, implying that

Φ2 ¼ ρPI

ffiffiffiffiffiffiffiffiffiffiffiffi
2iζðIÞ
3

r
: ð31Þ

As a further remark about the twisting type N solutions,
we note that if the gauge freedom to set P ¼ 1 is employed,
the metric is specified purely in terms of the function
Lðu; z; z̄Þ, and the type N and Ricci flat conditions may be
succinctly condensed down to just

∂I ¼ 0; ℑð∂̄ ∂̄ ∂∂LÞ ¼ 0; where I ¼ −∂u∂̄ L̄ : ð32Þ

The Weyl curvature is given by Ψ4 ¼ ρ∂uI.
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In contrast to nontwisting solutions, the second equality
in Eq. (18) does not hold for twisting solutions. Therefore,
while there is a curved Weyl double copy relation, in this
case it does not translate to a relation where the Maxwell
field and the scalar can be thought of as Minkowski fields,
unless we consider all the fields (gravity, Maxwell, and
scalar) at the linearized level.
Nonuniqueness.—In all the cases above, neither the

Maxwell field nor the scalar field are uniquely determined.
They are fixed only up to an arbitrary function of some of
the coordinates, which we are free to choose. This contrasts
with the Weyl double copy for vacuum type D solutions,
for which, in a spinor basis adapted to the principal null
directions, we have S3 ∝ ðΦ2Þ3=2 ∝ Ψ4, where the propor-
tionality is up to complex parameters [31]; hence the
Maxwell and scalar fields are functionally fixed. This
feature is related to the fact that vacuum type D spacetimes
are fully determined up to a few parameters, whereas
vacuum type N spacetimes (of any class, as seen above)
have functional freedom. By analogy, there is additional
freedom in the Maxwell and scalar fields in the curved
background.
In considering a special choice, we may ask whether it is

possible to choose Φ2 and S to be given by specific powers
of Ψ4, as in the type D case, i.e., there exists some constant
a such that Φ2 ∝ ðΨ4Þa and S ∝ ðΨ4Þ2a−1. The functional
dependence of the results above implies that this possibility
holds only for Kundt solutions. For pp waves, the power is
actually undetermined, i.e., the relation above holds for any
a. A simple choice is a ¼ 1=2, where S is constant, and in
fact this choice implies that Maxwell plane waves double
copy to gravitational plane waves (Φ2 and Ψ4 are functions
of u only). For the other plane-fronted Kundt solutions,
such a relation is possible for a ¼ 0, in which case
S ∝ ðΨ4Þ−1. Analogously simple choices for the other type
N classes are S ∝ 1=r for Robinson-Trautman solutions
and S ∝ ρ for twisting solutions.
Interestingly, pp waves are the only type N solutions

admitting a Killing 2-spinor [30], another feature that they
share with type D solutions.
A twistorial version of the Weyl double copy is given in

Ref. [63], focusing on type D but also introducing some
type III cases, at least at the linearized level. It would be
interesting to study whether this twistorial version explains
the nonuniqueness of the type N Weyl double copy
found here.
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