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We construct a specific example of a class of traversable wormholes in Einstein-Dirac-Maxwell theory in
four spacetime dimensions, without needing any form of exotic matter. Restricting to a model with two
massive fermions in a singlet spinor state, we show the existence of spherically symmetric asymptotically
flat configurations which are free of singularities, representing localized states. These solutions satisfy a
generalized Smarr relation, being connected with the extremal Reissner-Nordström black holes. They also
possess a finite mass M and electric charge Qe, with Qe=M > 1. An exact wormhole solution with
ungauged, massless fermions is also reported.
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Introduction.—The wormholes (WHs) entered modern
physics soon after the discovery of black holes (BHs) [1,2].
In both cases it took decades to understand their rich
physical content and to realize that they may play a role in
nature. However, while there is increasing evidence for the
existence of (astrophysical) BHs, the (Lorentzian, travers-
able) WHs remain so far rather an interesting possibility,
although with observational implications [3]. A basic
difference between these two types of solutions occurs
already at the level of energy momentum supporting the
corresponding geometries. While the BHs exist in vacuum,
being the end point of (normal matter’s) gravitational
collapse, the traversable WHs necessarily require a matter
content violating the null energy condition [4,5].
Restricting to a field theory source and a classical setting,
the (bosonic) matter fields necessarily possess a nonstand-
ard Lagrangian (e.g., “phantom” fields [6]), or one has to
consider extensions of gravity beyond general relativity
(see, e.g., Refs. [7,8]).
However, as we shall prove in this work, the situation

changes for fermions, with the existence of traversable WH
solutions of the Einstein-Dirac equations. In our approach, the
Dirac matter is described by a quantum wave function rather
than a quantum field. This results in a more tractable model,
with the backreaction of the matter to spacetime geometry
being taken into account. Moreover, the inclusion of an
electric charge leads to “smooth” geometries, without the
presence of a thin shell of extra matter at the throat of theWH.
Einstein-Dirac-Maxwell (EDM) model.—We consider a

model with two gauged relativistic fermions, the spin of
which is taken to be opposite in order to satisfy spherical
symmetry. Working in units with G ¼ c ¼ ℏ ¼ 1, the
action of the corresponding Einstein-Dirac-Maxwell
(EDM) model reads

S ¼ 1

4π

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

4
Rþ LD −

1

4
F2

�
; ð1Þ

where R is the Ricci scalar of the metric gμν, Fμν ¼ ∂μAν −∂νAμ is the field strength tensor of the U(1) field Aμ, and

LD ¼
X
ϵ¼1;2

�
i
2
Ψ̄ϵγ

νD̂νΨϵ −
i
2
D̂νΨ̄ϵγ

νΨϵ − μΨ̄ϵΨϵ

�
;

where γν are the curved space γ matrices [9] and μ is the
mass of both spinors, Ψϵ¼1;2. Also, D̂μ ¼ ∂μ þ Γμ − iqAμ,
where Γμ are the spinor connection matrices and q is the
gauge coupling constant. The resulting field equations are

Rμν −
1

2
Rgμν ¼ 2Tμν with Tμν ¼ TðDÞ

μν þ TðMÞ
μν ; ð2Þ

ðγνD̂ν − μÞΨϵ ¼ 0; ∇μFμν ¼ qjν; ð3Þ

with the current jν ¼ P
ϵ¼1;2 Ψ̄ϵγ

νΨϵ and TðDÞ
μν ¼P

ϵ¼1;2 2ImðΨ̄ϵγðμD̂νÞΨϵÞ, TðMÞ
μν ¼ FμαFα

ν − 1
4
F2gμν.

Restricting to static, spherically symmetric solutions of
the field equations, we consider a general metric ansatz
ds2 ¼ gttðrÞdt2 þ grrðrÞdr2 þ gΩΩðrÞdΩ2, where r and t
are the radial and time coordinates and
dΩ2 ¼ dθ2 þ sin2 θdφ2. The U(1) field is purely electric,
with A ¼ VðrÞdt. A general spinors ansatz compatible with
the symmetries of the considered line element is [10]

Ψϵ ¼ e−iwtRϵðrÞ ⊗ Θϵðθ;φÞ; ð4Þ

with w the frequency and
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�
;

Θ1 ¼
�−κ sin θ

2

cos θ
2

�
eiðφ=2Þ; Θ2 ¼
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κ cos θ

2

sin θ
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�
e−iðφ=2Þ;

with κ ¼ �1. Also, assuming r > 0, one considers the
usual tetrad choice, with er ¼ ffiffiffiffiffiffi

grr
p

dr, eθ ¼ ffiffiffiffiffiffiffiffi
gΩΩ

p
dθ,

eφ ¼ ffiffiffiffiffiffiffiffi
gΩΩ

p
sin θdφ, et ¼ ffiffiffiffiffiffiffiffi−gtt

p
dt.

A useful parametrization in the numerics is
ϕ ¼ jϕjeiα=2 ¼ eiπ=4F − e−iπ=4G. Then the entire matter
content of the model is encoded in the two real fermion
functionsFðrÞ,GðrÞ, together with the electrostatic potential
VðrÞ. This is essentially the framework used in Ref. [11] to
construct (topologically trivial) particlelike solutions of the
EDM system. In what follows we show that the system
possess also traversable WH configurations [12].
Exact solution.—The resulting EDM equations can be

solved analytically in the q ¼ 0 limit, the spinor fields
being massless, with w ¼ 0. The solution has the metric
and the U(1) potential,

ds2¼−
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M
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�
2
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Þ
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while the spinor functions are
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with c0 ≠ 0 an arbitrary constant. This describes a (regular)
traversable WH solution, with r0 the throat’s radius and
Qe < r0 the electric charge, whileM is the Arnowitt-Deser-
Misner (ADM) mass (note that Qe=M > 1). The WH
geometry is supported by the spinors’ contribution to the
total energy-momentum tensor, being regular everywhere.
As Qe → r0, the extremal Reissner-Nordström (RN) BH is
approached, while TðDÞ

μν → 0.
Although this solution captures some basic properties of

the general configurations below, it also possesses some
undesirable features. In particular, the spinor wave function
is not normalizable, since jϕj does not vanish as r → ∞.
However, the situation changes in a model with massive
fermions: they become exponentially localized.
General case.—The generic solutions have μ ≠ 0, q ≠ 0

and are found numerically, by employing a metric ansatz
which makes transparent the WH structure and simplifies
the numerics [7],

ds2 ¼ −e2νðrÞdt2 þ fðrÞdr2 þ ðr2 þ r20ÞdΩ2; ð6Þ

with r0 > 0 the radius of the throat, which is located at
r ¼ 0 (with AT ¼ 4πr20 the throat area). TheWH consists in
two different regions Σ� of the same universe. The “up”
region is found for 0 < r < ∞; there is also a “down”
region, with −∞ < r < 0. However, in general the joining
at r ¼ 0 of these regions is not smooth, with a discontinuity
of the metric derivatives. This implies the presence of a thin
mass shell structure at the throat, with a δ source added to
the action (1) [e.g., the surface energy density is
ϵT ¼ −4ν0ð0Þ= ffiffiffiffiffiffiffiffiffi

fð0Þp
]. The condition for a smooth geo-

metry is ν0ð0Þ ¼ 0.
Also, we shall consider the case of a symmetric WH, the

geometry (6) and the energy-momentum tensor being
invariant under the transformation r → −r. The sign
change of r at the WH’s throat reflects in a change of
sign of the tetrad [13]. Then the matter functions transform
as Vðr0Þ ¼ −VðrÞ and ϕðr0Þ ¼ iϕ̄ðrÞ (with r0 ¼ −r > 0),
while κ → −κ and w → −w. As such, in what follows we
shall report results mainly for the r ≥ 0 region.
With this framework, the problem reduced to solving a

system of four first order equations for fν; f; F;Gg and a
second order equation for V [14]. These equations are
invariant under the transformation w → wþ β, V → V þ
β=q (with β an arbitrary constant), which is fixed by
imposing the electric potential to vanish at the throat.
The only global charges are the mass M and the electric

charge Qe, which are read from the far field asymptotics.
For the up region, one finds ν → −M=r, f → 1þ 2M=r,
V → Φ −Qe=r (with Φ the electrostatic potential).
The spinor functions decay as e−μ�r=r, where μ� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ðw −Φ=qÞ2

p
(with the bound state condi-

tion μ2� ≥ 0).
An approximate solution can also be found close to the

throat, with the boundary conditions νð0Þ ¼ ν0, fð0Þ ¼ f0,
Fð0Þ ¼ 0, Gð0Þ ¼ G0, and Vð0Þ ¼ 0 (ν0, f0, G0 being
nonzero constants).
The WHs satisfy a Smarr law, the mass being the sum of

an electrostatic term and a bulk contribution,

M ¼ ΦQe þMðBÞ; ð7Þ

with

MðBÞ ¼4

Z
∞

0

drðr2þr20Þ½μ
ffiffiffi
f

p
eνðF2−G2ÞþqVjϕj2

ffiffiffi
f

p
�:

By integrating the Maxwell equations, one finds

Qe ¼ 2qQN þQT; ð8Þ

where QN is the Noether charge of a spinor (or number of
particles),
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QN ¼ 1

4π

Z
Σþ

d3x
ffiffiffiffiffiffi
−g

p
jtϵ ¼ 4

Z
∞

0

dr
ffiffiffi
f

p
ðr2 þ r20Þjϕj2;

and QT ¼ V 0ð0Þe−νð0Þr20=
ffiffiffiffiffiffiffiffiffi
fð0Þp

. Similar relations hold for
the r < 0 region, with mass, electric charge, and Noether
charge changing sign.
The equations of the model are invariant under the

scaling transformation (the variables and quantities which
are not specified remain invariant): ðr; r0Þ → λðr; r0Þ,
ðF;GÞ → ðF;GÞ= ffiffiffi

λ
p

, ðμ; q; wÞ → ðμ; q; wÞ=λ, where
λ is a positive constant, while various quantities of
interest transform as ðM;QeÞ → λðM;QeÞ; ðQN; AHÞ →
λ2ðQN; AHÞ. Only quantities which are invariant under this
transformation (like M=Qe) are relevant.
As with the solitons [11,15,16], this transformation is

used to impose the one particle condition,QN ¼ 1, for each
spinor in both up or down regions.
Solutions.—We have solved the EDM for various values

of the model’s constants ðμ; qÞ. In particular, WH sol-
utions exist also in the ED limit (i.e., q ¼ 0 and V ¼ 0).
However, as seen in the inset of Fig. 1, those solutions
have always ν0ð0Þ ≠ 0, and thus require the presence of
extra matter at the throat. The smooth configurations
necessarily possess a nonzero electric charge and have
μ > 0 (although q can vanish), the profile of a typical such
configuration (marked with a star in Fig. 3) being
displayed in Fig. 2.
In our approach, apart from ðq; μÞ, the other input

parameters are fQe; r0; wg, all other quantities (e.g., M
andQN) being read from the numerical output. As shown in
Fig. 1, our results indicate that for fixed electric charge and
field frequency, a solution with no extra matter at the throat
exists for a unique value of the throat size [17].
As such, when varying w, a continuous set of smooth

solutions is found, the corresponding picture in terms of
mass versus throat area being shown in Fig. 3 (with the
quantities given in units of the electric charge). A curve
there interpolates between the extremal RN BH (in which
limit r0 becomes the horizon radius while the spinor fields

vanish) and a critical configuration with μ� → 0. This
behavior is generic, being found for all considered values
of ðq; μÞ. The set of all critical configurations forms the
critical line. Although they still possesses a smooth
geometry, their ADM mass is negative, a feature shared
by a set of solutions close to them. Also, we have found
that all solutions constructed so far have Qe=M > 1
and q=μ < 1.
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FIG. 1. The scaled thin layer energy density at the throat ϵT is
shown as a function of the scaled throat area AT for several sets of
solutions at fixed frequencies.
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A complementary picture is shown in the inset of Fig. 3,
with the quantities given in Planck units (with the one
particle condition imposed for each spinor). When the mass
μ of the spinors is made smaller and smaller, the solutions
get arbitrarily close to extremal RN BHs, while the ADM
mass appears to increase without bounds (note that, since
the product Qeq is constant along the colored lines in
Fig. 2, Qe and q behave in this limit as M and μ,
respectively). On the other hand, the largest values found
for μ are of order 102MPl, being approached at the
critical line.
Essential for the existence of the WH solution is the

violation of the null energy condition Tμνnμnν ≥ 0, for any
null vector field nμ [5]. The violation of this condition is
displayed in Fig. 2, with Tr

r − Tt
t < 0. The isometric

embedding of the same WH solution is shown in Fig. 4,
where the θ ¼ π=2 plane is considered. The (absolute value
of the) Noether charge density is also plotted there as a
color map (note that the maximal value of this quantity is
approached outside the throat).
EDM WHs and entanglement.—In addition, the smooth,

symmetric WHs have the Dirac fields at each side of the
throat entangled in a particular way. Let us introduce two
observers (Alice and Bob), which live in the asymptotically
flat regions, where the solutions are approximately those of
the flat space. Alice (at r → ∞) sees the fermions in the
state ΨA

ϵ ¼ jω; κi, while Bob (at r → −∞) sees the fer-
mions in a state with opposite numbers, ΨB

ϵ ¼ j − ω;−κi.
The full asymptotic states will belong to the product of
Alice and Bob Hilbert spaces, with Ψϵðjrj → ∞Þ ¼
ΨA

ϵ ⊗ ΨB
ϵ ¼ jω; κi ⊗ j − ω;−κi. This corresponds to an

entangled particle-antiparticle state of opposite chiralities
[13]. The WHs cannot be smooth unless the fermions are
entangled in such a way. Also, since the electric flux
smoothly enters the throat on one side and exits on the
other, Bob observes the opposite electric flux and also
measures opposite charges with respect to Alice (their
frames being flipped).
Conclusions.—All known examples of traversable WHs

with (classic) bosonic fields require some exotic matter
and/or nonstandard Lagrangians. However, the results in

this work show that the situation changes for a fermionic
matter content. WH solutions were found in the (standard)
EDM theory, without introducing extra matter in the bulk or
at the throat, providing an explicit realization of Wheeler’s
idea of “electric charge without charge” [18]. For the WHs
to be smooth, the presence of a total electric charge is
crucial, while to be traversable, the mass-charge ratio has to
be smaller than one.
A semiclassical approach has been used, in which case

the Dirac-Maxwell and Einstein equations are coupled, the
fermionic matter being treated as a quantum wave function,
a treatment which may provide a reasonable approximation
under certain conditions [19]. However, we expect such
configurations to exist as well in a more complete setting,
with fully quantized matter fields [20], as suggested by the
results in Ref. [21].
Also, although we considered a simple toy model with

two localized fermions, this study can be extended to states
with an arbitrary number of fermions, which would
enhance the size of quantum effects, while retaining the
simplifications offered by spherical symmetry [16,22].
EDM WHs with a single spinor should also exist, pos-
sessing an intrinsic angular momentum [23].
Generalizations of such WH solutions for the full matter
content of the standard model are also likely to exist.
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