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Quantifying the efficiency of random target search strategies is a key question of random walk theory,
with applications in various fields. If many results do exist for recurrent processes, for which the probability
of eventually finding a target in infinite space—so called hitting probability—is one, much less is known in
the opposite case of transient processes, for which the hitting probability is strictly less than one. Here, we
determine the universality classes of the large distance behavior of the hitting probability for general d-
dimensional transient jump processes, which we show are parametrized by a transience exponent that is
explicitly given.
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Quantifying the statistics of encounter events of a
random walker with a target has become a central question
of random walk theory [1,2], with applications ranging
from chemical reaction kinetics to animal foraging behav-
iors [3–5]. In the simplest setting of a single target in an
unbounded d-dimensional space, two radically different
scenarios naturally emerge: either the target is eventually
found with probability Π ¼ 1 (compact or recurrent case),
or with probability Π < 1 (noncompact or transient case).
This defines the hitting probability Π [1,6].
In the recurrent case, a classical observable is the

survival probability SðtÞ, i.e., the probability that the target
has not been found until time t. This quantity typically
decreases at long timescales as t−θ, where θ is the
persistence exponent, which has been the focus of numer-
ous studies [7]. In the transient case, the survival proba-
bility admits a nonzero large time limit, which is readily
expressed in terms of the hitting probability S→t→∞1 − Π.
This makes the hitting probability a key quantifier of the
search process in the transient case. The hitting probability
is expected to decrease with the distance R from the starting
position of the random walk and the target of radius a
according to Π ∼ Cða=RÞψ . The transience exponent ψ
recently introduced in [8] parallels the persistence exponent
of recurrent processes and is an intrinsic characteristic of
transient processes that has, however, been largely unex-
plored so far; in turn, the prefactor C depends on the
process and is required for the full determination of the
asymptotics of the hitting probability.
For jump processes [9,10], target capture events must

be defined. Two conventions have been adopted [8,11,12]:
the target can be found either when a jump ends inside
the target—arrival convention, or when a jump crosses the
target—crossing convention (see Fig. 1). Importantly,
for d ¼ 1, it has been shown that arrival and crossing

conventions can lead to strikingly different first-passage
properties [11,13] in the case of Levy processes. These can
be defined as the continuous time limit of Levy flights,
which are discrete time jump processes whose jump-length
distribution has a power law tail pðlÞ ∝ 1=l1þα with index
α ∈ ½0; 2�. For d ≥ 2, exact results for the hitting proba-
bility are sparse and available only for the arrival con-
vention, either for examples of jump distributions with
finite variance [14–16], or for the specific case of Levy
processes [17]. However, the hitting probability with the
crossing convention—which is clearly larger than with the
arrival convention and nontrivial for d ≥ 2 only—has not
been studied, despite its relevance to various examples of
target search problems. In particular, the hitting probability
of Levy flights with the crossing convention gives access to
the hitting probability of Levy walks, which play an
important role in the context of animal behavior [18].
In this Letter, we consider jump processes with a general

distribution of jump length, determine the large R behavior
of the hitting probability for both conventions, and reveal
its universality classes that we show are parametrized by the
transience exponent, which is explicitly given. Our results
are summarized in Table I. More precisely, in the case of
processes whose jump distribution has a finite variance we

FIG. 1. Hitting probability of jump processes with crossing
convention (plain line trajectory) or arrival convention (dashed
line trajectory). The target is detected when the path turns red.
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find that for both conventions ψ ¼ d − 2 (for the transient
case d ≥ 3) is universal, in the sense that it is independent
of the jump distribution. In the case of processes whose
jump distribution has an infinite variance, typically Levy
flights [18–22], we establish that ψ ¼ d − α for the arrival
convention, in agreement with the specific example of
stable Levy processes given in [17], which was the only
example known so far, and that ψ ¼ d −maxðα; 1Þ for the
crossing convention. This shows that the transience expo-
nent only depends on α, and not on the shape of the jump
distribution at small length scales. Of note, for α > 1 both
conventions yield the same transience exponents, while for
α < 1 different values are obtained; this reflects the
significant weight of long jumps overshooting the target
for α < 1 with the arrival convention. Moreover, we show
that the prefactorC of the hitting probability depends on the
short length scale behavior of the jump distribution for all α
in the arrival convention, and for α > 1 for the crossing
convention. Remarkably, C is independent of the jump
distribution at short length scales for α < 1. In this case of
superuniversal behavior, we fully compute the asymptotics
of Π (i.e., C and ψ).
Definitions and integral equation.—We consider a jump

process XðnÞ (discrete-time random walk) in a continuous
d-dimensional space, starting from position R, with a
spherical target of radius a centered at 0. We assume that
the increments YðnÞ ¼ Xðnþ 1Þ −XðnÞ of the walk are
independent, stationary, and isotropic; we denote pðYÞ the
corresponding distribution. Following the usual classifica-
tion of jump processes [23], we introduce the Fourier
transform p̃ðkÞ ¼ R

dYeikYpðYÞ and write without loss of
generality its small k expansion: p̃ðkÞ ¼ 1 − σαjkjα þ � � �.
Here, α ¼ 2 for all distributions with finite second moment
and α < 2 otherwise. In turn, σ provides a natural length
scale that makes it possible to define the continuous limit of
the process by taking σ → 0; according to the generalized
central limit theorem, this limit yields the Brownian motion
for α ¼ 2 and α-stable Levy processes for α < 2 [23]. We
consider transient processes, such that ΠðRÞ → 0 for

R → ∞, and aim at determining this large R asymptotics
of Π, which by dimensional analysis is a function of R=a,
σ=a. Below, we first consider the case σ=a ≪ 1 (continu-
ous limit), and next the general case σ=a arbitrary; we
provide the main steps of the derivation of the results and
discuss their impact, while details can be found in
Supplemental Material (SM) [24].
With the arrival convention, we define the trajectory of

the walker as the set of points fXðnÞgn∈N only; with the
crossing convention, the trajectory is defined as the full set
f½XðnÞ;Xðnþ 1Þ�gn∈N of segments joining the successive
XðkÞ. With these definitions, with either convention, the
target is found when the trajectory intercepts the target (see
Fig. 1). Making a partition over the first step of the process,
which brings the walker from a position R to a position
Rþ Y, the probability ΠðRÞ that the walker eventually
finds the target satisfies

ΠðRÞ ¼
Z
Y∉E

ΠðRþ YÞpðYÞdY þ
Z
Y∈E

pðYÞdY; ð1Þ

where E denotes the set of jumps that cross the target
starting from R. Note that E is empty for the arrival
convention, but not for the crossing one. This linear integral
equation, complemented by the boundary conditions
ΠðRÞ ¼ 1 for R < a and ΠðRÞ → 0 for R → ∞ fully
defines the problem at the core of this Letter.
Continuous limit (σ=a ≪ 1).—In this limit, Eq. (1)

becomes

ð−ΔÞα=2ΠðRÞ ¼ lim
σ→0

1

σα

Z
Y∈E

½1 − ΠðRþ YÞ�pðYÞdY;

ð2Þ

where the fractional Laplacian operator is defined by

−ð−ΔÞα=2ΠðRÞ ¼ lim
σ→0

1

σα
E½ΠðRþ YÞ − ΠðRÞ� ð3Þ

and generalizes the classical Laplacian obtained for α ¼ 2.
Arrival convention.—In this case, E ¼ ∅, and Eq. (2)

reduces to

ð−ΔÞα=2ΠarrðRÞ ¼ 0 for R > a; ð4Þ

which is complemented by the boundary conditions stated
after Eq. (1). For α ¼ 2, the hitting probability of Brownian
motion is readily recovered [1]:

ΠarrðRÞ ¼ ða=RÞd−2 for d > 2; ð5Þ

while for d ≤ 2 the process is compact and Π ¼ 1 for all R.
We now assume α < 2 and d ≥ 2. Of note, this regime of
the arrival case in the continuous limit has been studied in
the mathematical literature [17]. A reminder is included

TABLE I. Universality classes of the asymptotic hitting prob-
ability of general jump processes (for arbitrary a, σ), for both
arrival and crossing problem. α is defined by the decay of the
jump distribution and short-range distribution is included in the
α ¼ 2 case. Value of the prefactors Dα and E are given in the text,
and “cst” means that the prefactor value is not universal and
depends on the full jump statistics. Note that the special case
d ¼ 2 and α ¼ 2 is not covered here, as the process becomes
compact [ΠðRÞ ¼ 1]. Note that for d ¼ 1, only the case α < 1
with the arrival convention is transient; it is covered by the table.

Arrival Crossing

α < 1 cstða=RÞd−α Dαða=RÞd−1
α ¼ 1 cstða=RÞd−1 E1 lnðRÞða=RÞd−1
1 < α ≤ 2 cstða=RÞd−α cstða=RÞd−α
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here for the sake of self-consistency, and because it will be
at the basis of the solution of the crossing problem
presented below; details can be found in SM [24]. The
main step of the derivation is to make use of the so-called
Kelvin transform (inversion in the sphere of radius a) [27];
this amounts to introducing the new function

Π̃arrðRÞ ¼
�
a
R

�
d−α

Πarrða2R=R2Þ; ð6Þ

which is now defined for R < a, i.e., inside the ball Ba of
radius a. Note that this transform is an involution, so that
(6) readily defines Πarr from Π̃arr. We show in SM that Π̃arr
satisfies [24]

ð−ΔÞα=2Π̃arrðRÞ ¼ 0 for R < a; ð7Þ

with Π̃arrðRÞ ¼ ða=RÞd−α for R > a. The original problem
(4), defined outside Ba, is thus exactly mapped to the
problem (7) defined insideBa, forwhich theGreen’s function
is known analytically. This gives access to the following
explicit determination of Π̃arr for R < a (see SM [24])

Π̃arrðRÞ ¼
Z
RdnBa

�
a
R0

�
d−α

PðR0;RÞdR0; ð8Þ

where the Poisson kernel is given by [28]

PðR0;RÞ ¼ Γðd=2Þ sinðπα=2Þ
πd=2þ1

�
a2 − R2

R02 − a2

�
α=2 ad

jR −R0jd :

ð9Þ

After inversion of the Kelvin transform according to (6), the
large R behavior of Πarr can finally be determined explicitly
(see SM [24])

ΠarrðRÞ ∼
2

d − α

Γðd
2
Þ

Γðα
2
ÞΓðd−α

2
Þ
�
a
R

�
d−α ≡ Fα

�
a
R

�
d−α

: ð10Þ

Note that this result, obtained previously in [17] also holds
for d ¼ 1 and α < 1 (which corresponds to transient
processes).
Crossing convention.— In this case, E ≠ ∅, and Eq. (2)

can be written

ð−ΔÞα=2ΠcrossðRÞ ¼ gðRÞ; ð11Þ

the boundary conditions stated after Eq. (1) are unchanged.
Note that g, defined as the right-hand side of (2) depends on
Πcross itself, which makes the resolution for arbitrary R a
complex problem. However, making use of ΠcrossðRÞ → 0
for R → ∞, the asymptotic behavior of gðRÞ is found to be
independent of Πcross; more explicitly, it is shown in SM to
satisfy for R → ∞ [24]:

gðRÞ ∼ Vd−1

Sd

2ΓðαÞ sinðπα=2Þ
π

�
a
R

�
d−1 1

Rα ð12Þ

≡c0

�
a
R

�
d−1 1

Rα ; ð13Þ

where Sn and Vn denote, respectively, the surface and the
volume of the unit sphere of Rn. This is in fact sufficient to
derive the large R asymptotics of Πcross. It is convenient to
write the solution to Eq. (11) as

Πcross ¼ Πarr þ Πpart; ð14Þ

where Πarr has been determined in Eq. (10) and Πpart

satisfies the linear equation (11) with the boundary con-
dition ΠpartðRÞ ¼ 0 for R < a. Making use again of the
Kelvin transform, we find that Π̃partðRÞ is solution of the
following problem:

ð−ΔÞα=2Π̃partðRÞ ¼ g̃ðRÞ for R < a; ð15Þ

with Π̃partðRÞ ¼ 0 for R > a, and g̃ðRÞ ¼ gða2R=R2Þ·
ða=RÞdþα. This auxiliary problem, defined inside Ba, can
be solved exactly by using the Green’s function [28]:

GðR;R0Þ ¼ CαjR −R0jα−d
Z

r0ðR;R0Þ

0

rα=2−1

ðrþ 1Þd=2 dr; ð16Þ

with r0ðR;R0Þ ¼ ½ða2 − R2Þða2 − R02Þ�=a2jR −R0j2 and
Cα ¼ f½Γðd=2Þ�=½2απd=2ΓðαÞ2�g. The solution, valid for
any 0 < α ≤ 2 reads

Π̃partðRÞ ¼
Z
Ba

GðR;R0Þg̃ðR0ÞdR0; ð17Þ

andΠpartðRÞ is finally deduced by inverse Kelvin transform
(6), and ΠcrossðRÞ from (14).
First, we consider the case α ¼ 2 (Brownian limit).

Equations (12) and (13) then yield g ¼ 0, so that
ΠpartðRÞ ¼ 0. From (14), the solution with the crossing
convention is thus identical to that of the arrival convention
[Eq. (5)], as expected from the continuous nature of the
trajectories in the Brownian limit.
In the case 0 < α < 2, in order to analyze the R → ∞

asymptotics of ΠcrossðRÞ, we take the R → 0 limit in
Eq. (17). For 1 < α < 2, it is shown in SM that Π̃crossðR ¼
0Þ is finite [24]. Inverting the Kelvin transform then yields

ΠcrossðRÞ ∝ ða=RÞd−α: ð18Þ

Note that, as opposed to the arrival convention, the value of
the prefactor is not determined by our approach because the
full function g is involved (and not only its large R
asymptotics); however, the prefactor depends only on the
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asymptotics of the jump distribution pðYÞ. For α < 1, it is
shown in SM that Π̃part ∝

R→0
Rα−1, so that Π̃arr ¼ Oð1Þ can be

neglected [24]. After inversion of the Kelvin transform, we
finally get the full asymptotics (including the prefactor)

ΠcrossðRÞ ∼ Cαc0
Γðα

2
ÞΓðd−α

2
Þ

Γðd
2
Þ

�
a
R

�
d−1 Z

Rd

je − ujα−d
juj du

≡Dα

�
a
R

�
d−1

: ð19Þ

Note that in the ballistic limit α → 0, we get
Dα → limα→0c0 ¼ Vd−1=Sd. This is indeed as expected
the probability that a random straight line intersects a
spherical target at distance R.
For completeness, we finally provide the full asymp-

totics of the “marginal” case α ¼ 1, which is derived in
SM [24]:

ΠcrossðRÞ ∼ 2

πðd − 1Þ
lnðRÞad−1

Rd−1 ≡ E1 lnðRÞad−1
Rd−1 : ð20Þ

These results in the continuous limit are confirmed by
numerical simulations in Fig. 2, and allow us to quantify
the relative impact of the crossing and arrival conventions
on the hitting probability. For 1 < α < 2, we find that the
transience exponent ψ ¼ d − α is the same with both
conventions with, however, a larger prefactor with the
crossing convention. The prefactor is determined explicitly

for the arrival convention, but not for the crossing one. For
α < 1, the weight of long jumps crossing the target in the
crossing convention becomes large enough to impact the
transience exponent itself, which is found to be ψ ¼ d − 1
in the crossing convention and ψ ¼ d − α in the arrival
convention. In this case, for both conventions the prefactor
is determined explicitly.
General jump processes (σ=a arbitrary).—In the general

case, the hitting probability Π a priori depends on the full
jump distribution pðYÞ. This has been highlighted in
particular in the case of jump processes with finite variance
(α ¼ 2) with the arrival convention in 3d [16]. While the
exponent ψ ¼ d − 2 obtained in the continuous limit is
recovered in this case (for d ≥ 3), the determination of the
prefactor is nontrivial and leads to an explicit dependence
on pðYÞ. We now analyze the case of general jump
processes with 0 < α ≤ 2, and determine the large R
asymptotics of ΠðRÞ.
Let us first focus on the arrival problem. We show in SM

that exact bounds for Πarr can be obtained [24], which
allows us to show that

Πarr ∼ Karr

�
a
R

�
d−α

ð21Þ

for large R. Of note the prefactor Karr depends on the full
distribution pðYÞ, but the transience exponent ψ ¼ d − α is
the same as in the continuous limit considered above and
depends only on α.

FIG. 2. Asymptotic behavior of ΠðRÞ in the continuous limit.
Circles are simulations for various α with the crossing conven-
tion. Plain lines are the theoretical expression (19) for α < 1. Note
that there is no fitting parameter. Dashed lines show the
theoretical result for the arrival problem, Eq. (10). We see that
the decay as Rd−α matches the one of the crossing problem with
α > 1, although with a different prefactor. The unit of length is
fixed by the radius of the target.

FIG. 3. Universality and superuniversality of the hitting prob-
ability for general jump processes (for arbitrary a, σ). Hitting
probability of Levy walks for α ¼ 0.5 and α ¼ 1.25 and various
scale parameter σ for both arrival and crossing conventions.
Symbols stand for simulations of Levy walks. The “truncated”
Levy walk has a jump length l conditioned by l > σ. Plain lines
refer to Eq. (19); dashed lines are power laws of expected
exponent ψ with fitted prefactor. The value of the prefactor is
clearly independent of the details of the jump distribution (σ,
truncation…) only for the crossing convention with α ≤ 1. The
unit of length is fixed by the radius of the target.
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We focus now on the crossing problem. We show in SM
that exact bounds for Πcross can again be obtained [24],
which allows us to show that

Πcross ∼ Kcross

�
a
R

�
d−maxð1;αÞ

; ð22Þ

where Kcross depends on pðYÞ for 1 < α ≤ 2 and Kcross ¼
Dα for α < 1.
Finally, two important results are obtained. First, the

transience exponent is given by ψ ¼ d −maxð1; αÞ, as
in the continuum limit. Second, for α < 1, one has
Πcross ∼Dαða=RÞd−1, which corresponds to a superuniver-
sal regime: the transience exponent is fully independent of
the jump distribution, and the prefactor depends on the
jump distribution only through the Levy exponent α—it is
in particular independent of the scale parameter σ. These
results are summarized in Table I, and confirmed by
numerical simulations (see Fig. 3).
To conclude, we have analyzed the asymptotic behavior

of the hitting probability for general transient jump proc-
esses, which is a key, although largely unexplored, observ-
able to quantify the efficiency of random search strategies.
We have shown that the result is strongly dependent on
the ability of the walker to detect the target, so that the
transience exponent ψ itself is different for arrival and
crossing problems for α < 1. Moreover, we have deter-
mined explicitly the universality classes of the hitting
probability, and unveiled a superuniversal regime where
both the transient exponent and the prefactor are indepen-
dent of the microscopic details of the process.
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Phys. Rev. E 98, 022125 (2018).

[9] N. Van Kampen, Stochastic Processes in Physics and
Chemistry, 3rd ed. (North-Holland Personal Library, Am-
sterdam, 1992).

[10] C. Gardiner, Handbook of Stochastic Methods for Physics,
Chemistry and Natural Sciences (Springer, New York,
2004).

[11] A. V. Chechkin, R. Metzler, V. Y. Gonchar, J. Klafter, and
L. V. Tanatarov, J. Phys. A 36, L537 (2003).

[12] V. V. Palyulin, G. Blackburn, M. A. Lomholt, N. W. Wat-
kins, R. Metzler, R. Klages, and A. V. Chechkin, New J.
Phys. 21, 103028 (2019).

[13] T. Koren, M. A. Lomholt, A. V. Chechkin, J. Klafter, and R.
Metzler, Phys. Rev. Lett. 99, 160602 (2007).

[14] R. M. Ziff, J. Stat. Phys. 65, 1217 (1991).
[15] S. N. Majumdar, A. Comtet, and R. M. Ziff, J. Stat. Phys.

122, 833 (2006).
[16] R. M. Ziff, S. N. Majumdar, and A. Comtet, J. Chem. Phys.

130, 204104 (2009).
[17] R. M. Blumenthal, R. K. Getoor, and D. B. Ray, Trans. Am.

Math. Soc. 99, 540 (1961).
[18] V. Zaburdaev, S. Denisov, and J. Klafter, Rev. Mod. Phys.

87, 483 (2015).
[19] M. F. Shlesinger, B. J. West, and J. Klafter, Phys. Rev. Lett.

58, 1100 (1987).
[20] T. Geisel, J. Nierwetberg, and A. Zacherl, Phys. Rev. Lett.

54, 616 (1985).
[21] V. Zaburdaev, I. Fouxon, S. Denisov, and E. Barkai, Phys.

Rev. Lett. 117, 270601 (2016).
[22] A. Vezzani, E. Barkai, and R. Burioni, Sci. Rep. 10, 2732

(2020).
[23] J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).
[24] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.126.100602 for details
about the derivation, which includes Refs. [25,26].

[25] K. Bogdan, Hiroshima Math. J. 29, 227 (1999).
[26] J. P. Nolan, Univariate Stable Distributions (Springer, New

York, 2020).
[27] K. Bogdan and T. Żak, J. Theor. Probab. 19, 89 (2006).
[28] C. Bucur, Commun. Pure Appl. Anal. 15, 657 (2016).

PHYSICAL REVIEW LETTERS 126, 100602 (2021)

100602-5

https://doi.org/10.1016/j.physrep.2014.02.003
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1103/PhysRevX.10.021045
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1103/PhysRevE.98.022125
https://doi.org/10.1088/0305-4470/36/41/L01
https://doi.org/10.1088/1367-2630/ab41bb
https://doi.org/10.1088/1367-2630/ab41bb
https://doi.org/10.1103/PhysRevLett.99.160602
https://doi.org/10.1007/BF01049608
https://doi.org/10.1007/s10955-005-9002-x
https://doi.org/10.1007/s10955-005-9002-x
https://doi.org/10.1063/1.3137062
https://doi.org/10.1063/1.3137062
https://doi.org/10.1090/S0002-9947-1961-0126885-4
https://doi.org/10.1090/S0002-9947-1961-0126885-4
https://doi.org/10.1103/RevModPhys.87.483
https://doi.org/10.1103/RevModPhys.87.483
https://doi.org/10.1103/PhysRevLett.58.1100
https://doi.org/10.1103/PhysRevLett.58.1100
https://doi.org/10.1103/PhysRevLett.54.616
https://doi.org/10.1103/PhysRevLett.54.616
https://doi.org/10.1103/PhysRevLett.117.270601
https://doi.org/10.1103/PhysRevLett.117.270601
https://doi.org/10.1038/s41598-020-59187-w
https://doi.org/10.1038/s41598-020-59187-w
https://doi.org/10.1016/0370-1573(90)90099-N
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.100602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.100602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.100602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.100602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.100602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.100602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.100602
https://doi.org/10.32917/hmj/1206125005
https://doi.org/10.1007/s10959-006-0003-8
https://doi.org/10.3934/cpaa.2016.15.657

