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We study the attractive SUðNÞ Hubbard model with particle-hole symmetry. The model is defined on a
bipartite lattice with the number of sites NA ðNBÞ in the A (B) sublattice. We prove three theorems that
allow us to identify the basic ground-state properties: the degeneracy, the fermion number, and the SUðNÞ
quantum number. We also show that the ground state exhibits charge density wave order when jNA − NBj is
macroscopically large. The theorems hold for a bipartite lattice in any dimension, even without translation
invariance.
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Introduction.—The (fermionic) Hubbard model [1–3] is
one of the most important models for describing strongly
correlated fermions. Despite its apparent simplicity, the
model has proved to be notoriously difficult to analyze
analytically, and rigorous results are few and far between
[4–7].
Recently, the SUðNÞ generalization of the Hubbard

model has attracted much attention since it was realized
with ultracold atoms in optical lattices [8–21]. In particular,
attractive SUðNÞ Hubbard models are predicted to host a
variety of exotic phases that do not appear in the SU(2)
counterpart, including color superfluid and trion phases
with N ¼ 3 [22–25].
In the SU(2) case, the spin-reflection positivity method

invented by Lieb [26] is a powerful tool to establish
rigorous results. It exploits the symmetry between up-spin
and down-spin electrons. When the interaction is attractive
and the number of electrons is even, the ground state was
shown to be unique and a spin singlet [26]. When the lattice
is bipartite and the difference in the number of sites in the
two sublattices is macroscopically large, the coexistence of
superconductivity and charge density wave was proved
[27–30]. This method has also been used to study the
ground state of other strongly correlated electron systems
[30–40], such as the periodic Anderson model and the
Kondo lattice model.
However, the method in its original form is not appli-

cable to the SUðNÞ Hubbard model with N ≥ 3. Thus, a
new approach has to be developed. Here, we use a method
based on the Majorana representation of fermions called
Majorana reflection positivity [41]. While the spin-reflec-
tion positivity method uses the symmetry between up-spin
and down-spin electrons, the Majorana reflection positivity
method relies on the symmetry between two species of
Majorana fermions, γð1Þ and γð2Þ. It has been used to solve
the fermion sign problem in quantum Monte Carlo

simulations [42–45]. For example, the SU(3) attractive
Hubbard model on the honeycomb lattice was numerically
studied, and a quantum phase transition from a semimetal
to a charge density wave phase was observed [46]. The
method was also used to discuss the ground-state degen-
eracy of interacting spinless fermions [47].
In this Letter, we extend themethod ofMajorana reflection

positivity and prove three theorems on the attractive SUðNÞ
Hubbard model with N ≥ 3. First, we will identify the
degeneracy, the fermion number, and the SUðNÞ quantum
number of the ground state (Theorem 1). This is a natural
generalization of Lieb’s theorem on the SU(2) Hubbard
model [26]. Next, we will prove an inequality for a
correlation function,which is ameasure of the charge density
wave order (Theorem2). Finally, combiningTheorems 1 and
2, we will show that the system exhibits the charge density
wave order when jNA − NBj is macroscopically large, where
NA ðNBÞ is the number of sites in the A (B) sublattice
(Theorem 3). This is a natural generalization of Tian’s
theorem on the SU(2) Hubbard model [29].
The model and main results.—We consider the attractive

SUðNÞ Hubbard model on a finite bipartite lattice Λ.
Bipartiteness means that the lattice Λ can be divided into
two sublattices, A and B, and if two sites x; y ∈ Λ belong to
the same sublattice, the hopping matrix element tx;y is zero.
Let us write the number of sites in the whole lattice Λ as Ns
and the number of sites in the A (B) sublattice as NA ðNBÞ.
For each site x ∈ Λ, we denote by c†x;σ and cx;σ the creation
and annihilation operators, respectively, of a fermion with
flavor σ ¼ 1;…; N. We define the number operators by
nx;σ ¼ c†x;σcx;σ and nx ¼

P
N
σ¼1 nx;σ . Let us consider the

standard Hamiltonian of the attractive SUðNÞ Hubbard
model

H ¼ Hhop þHint; ð1Þ
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Hhop ¼
X

x∈A;y∈B

XN
σ¼1

tx;yðc†x;σcy;σ þ c†y;σcx;σÞ; ð2Þ

Hint ¼
X
x∈Λ

Ux

�
nx −

N
2

�
2

: ð3Þ

The on-site interactions may depend on sites, as long as
Ux < 0. We assume that the hopping matrix elements tx;y
are real. We also assume that the lattice is connected via
nonvanishing hopping matrix elements; i.e., for any x; y ∈
Λ such that x ≠ y, there exists a finite sequence z1;…; zn ∈
Λ with z1 ¼ x; zn ¼ y, where tzj;zjþ1

are nonvanishing for
all j ¼ 1;…; n − 1. Note that the Hamiltonian is invariant
under the particle-hole transformation cx;σ → ð−1Þxc†x;σ,
where ð−1Þx ¼ 1 if x ∈ A and ð−1Þx ¼ −1 if x ∈ B.
To state our first theorem, let us define SUðNÞ singlet

states. To this end, we introduce the operators Fσ;τ ¼P
x∈Λ c

†
x;σcx;τ. Here, Fσ;σ is the total number operator of

fermions with flavor σ, while Fσ;τ (σ ≠ τ) are flavor-raising
and -lowering operators. Since all Fσ;τ operators commute
with the Hamiltonian H, it has the global UðNÞ ¼ Uð1Þ ×
SUðNÞ symmetry. A state jΦsingleti is an SUðNÞ singlet with
the total fermion number Nf if Fσ;τjΦsingleti ¼ 0 for all
σ ≠ τ and Fσ;σjΦsingleti ¼ ðNf=NÞjΦsingleti for all σ ¼
1;…; N [48]. Our first theorem is stated as follows.
Theorem 1.—Consider the attractive SUðNÞ Hubbard

model with the Hamiltonian (1) with N ≥ 3. When
NA ≠ NB, there are exactly two ground states in the whole
Fock space. The two ground states are SUðNÞ singlets and
their total fermion numbers are NNA and NNB, respec-
tively. WhenNA ¼ NB, there are at most two ground states,
each of which is an SUðNÞ singlet and whose total fermion
number is NNAð¼ NNBÞ.
We can also show an inequality for a correlation function

for the ground state. Let us define an operator Sx;y for a pair
of sites x; y ∈ Λ (including the case x ¼ y) as

Sx;y ¼ ð−1Þxð−1Þy
�
nx −

N
2

��
ny −

N
2

�
; ð4Þ

where ð−1Þx ¼ 1 if x ∈ A and ð−1Þx ¼ −1 if x ∈ B. Then,
our second theorem is stated as follows.
Theorem 2.—Under the same conditions as in

Theorem 1, we have for any ground state jΦGSi and
for x; y ∈ Λ that

hΦGSjSx;yjΦGSi > 0: ð5Þ

The correlation function hΦGSjSx;yjΦGSi is a measure of
the charge density wave order. Note that this inequality
does not necessarily imply the presence of the long-range
order in the thermodynamic limit.

However, when jNA − NBj is macroscopically large, we
can prove the presence of the long-range order. Assume
that jNA − NBj ¼ aNs with a constant a such that
0 ≤ a < 1. Note that Ns ¼ NA þ NB. The order parameter
for the charge density wave is

SCDW ¼
X
x∈Λ

ð−1Þx
�
nx −

N
2

�
: ð6Þ

Then, our third theorem is stated as follows.
Theorem 3.—Under the same conditions as in

Theorem 1, we have for any ground state jΦGSi that

hΦGSjðSCDWÞ2jΦGSi >
�
aNNs

2

�
2

: ð7Þ

Since the right-hand side of the inequality (7) is propor-
tional to N2

s for 0 < a < 1, this theorem shows that the
system has long-range order.
Theorem 3 follows from Theorems 1 and 2.
Proof of Theorem 3.—First one finds

ðSCDWÞ2 ¼
X
x;y∈Λ

Sx;y: ð8Þ

By using the inequality (5),

hΦGSj
X
x;y∈Λ

Sx;yjΦGSi

> hΦGSj
X
x;y∈Λ

ð−1Þxð−1ÞySx;yjΦGSi

¼ hΦGSj
�X
x;y∈Λ

�
nx −

N
2

��
ny −

N
2

��
jΦGSi

¼ hΦGSj
�X

x∈Λ

�
nx −

N
2

��
2

jΦGSi: ð9Þ

From Theorem 1, the total fermion number of the ground
state is NNA or NNB. Substituting

P
x∈Λ nx ¼ NNA or

NNB into Eq. (9) and using jNA − NBj ¼ aNs, we obtain
Eq. (7). ▪
To prove Theorems 1 and 2, we use a matrix represen-

tation of eigenstates introduced by Wei et al. [47]. First, we
will show the following lemma.
Lemma 4.—Consider the attractive SUðNÞ Hubbard

model with the Hamiltonian (1) with N ≥ 3. When NNs
is odd, there are exactly two ground states. When NNs is
even, there are at most two ground states.
In the following discussion, we only consider the case

where NNs is odd. For even NNs, see the Supplemental
Material [49].
The Majorana representation.—A complex fermion can

be decomposed into two Majorana fermions. We define

γð1Þx;σ ¼ cx;σ þ c†x;σ, γ
ð2Þ
x;σ ¼ −iðcx;σ − c†x;σÞ at sublattice A and
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γð1Þx;σ ¼ −iðcx;σ − c†x;σÞ, γð2Þx;σ ¼ cx;σ þ c†x;σ at sublattice B.
They satisfy the relations

γðjÞ†x;σ ¼ γðjÞx;σ; fγðjÞx;σ; γ
ðkÞ
y;τg ¼ 2δj;kδx;yδσ;τ ð10Þ

for all x; y ∈ Λ, σ; τ ¼ 1;…; N, j, k ¼ 1, 2. Using the
Majorana representation, we can rewrite Eqs. (2) and (3) as

Hhop ¼
X

x∈A;y∈B

XN
σ¼1

tx;y

�
i
2
γð1Þx;σγ

ð1Þ
y;σ −

i
2
γð2Þx;σγ

ð2Þ
y;σ

�
; ð11Þ

Hint ¼
X
x∈Λ

XN
σ;τ¼1

Ux

�
i
2
γð1Þx;σγ

ð1Þ
x;τ

��
−
i
2
γð2Þx;σγ

ð2Þ
x;τ

�
: ð12Þ

The operators on the whole Fock space form a complex
vector space. We write this vector space as O. Note that the
dimension of O is 2NNs . We introduce the Hilbert-Schmidt
inner product for O1; O2 ∈ O as

hO1; O2i ¼
1

2NNs
Tr½O†

1O2�: ð13Þ

Then, the operators defined by

Γð1Þ
α ¼ iblðαÞ=2cγð1Þx1;σ1 � � � γð1ÞxlðαÞ;σlðαÞ ; ð14Þ

Γð2Þ
α ¼ ð−iÞblðαÞ=2cγð2Þx1;σ1 � � � γð2ÞxlðαÞ;σlðαÞ ð15Þ

form an orthonormal basis of O. Here, α ¼ ððx1; σ1Þ;…;
ðxlðαÞ; σlðαÞÞÞ denotes a subset of Λ × f1; 2;…; Ng
ordered according to an arbitrary order introduced in
Λ × f1; 2;…; Ng. We wrote the length of α as lðαÞ, and
blðαÞ=2c is the largest integer less than or equal to lðαÞ=2.
Wewrite the set of α asC, and the set of even- (odd-) length
α as CevenðoddÞ. Here, jCj ¼ 2NNs and jCevenj ¼ jCoddj ¼
2NNs−1 [50]. We also define the parity operators,

Δð1Þ ¼ ibNNs=2c
Y
x∈Λ

YN
σ¼1

γð1Þx;σ; ð16Þ

Δð2Þ ¼ ð−iÞbNNs=2c
Y
x∈Λ

YN
σ¼1

γð2Þx;σ; ð17Þ

which commute with the Hamiltonian. Here, we assumed

that the product is ordered in the same order as Γð1Þ
α and

Γð2Þ
α . Note that Δð1Þ commutes (anticommutes) with Δð2Þ

when NNs is even (odd), and ðΔð1ÞÞ2 ¼ ðΔð2ÞÞ2 ¼ 1.
Next, we define the eigenoperators of the Hamiltonian.
Definition 5.—An operator O ∈ O is said to be an

eigenoperator of H with eigenvalue E when HO ¼
OH ¼ EO. We denote by OE the subspace of O spanned
by the eigenoperators of H with eigenvalue E.

Let us consider the relation between the eigenoperator
formalism and the ordinary eigenvector formalism. Let
fjE; jijj ¼ 1;…; nEg be the complete set of eigenvectors
of H with eigenvalue E. Then, the subspace of O spanned
by fjE; jihE; kjjj; k ¼ 1;…; nEg corresponds to OE.
Therefore, if the degeneracy of the ground-state eigenvec-
tors is nE, the degeneracy of the ground-state eigenoper-
ators is n2E.
The eigenoperator can be decomposed into four sectors

because the Hamiltonian preserves the parity (even or odd)
of the number of γð1Þ and γð2Þ, respectively,

O ¼ Oeven;even ⊕ Oeven;odd ⊕ Oodd;even ⊕ Oodd;odd; ð18Þ

where OevenðoddÞ;evenðoddÞ is the subspace of O spanned

by fΓð1Þ
α Γð2Þ

β jα ∈ CevenðoddÞ; β ∈ CevenðoddÞg.
When NNs is odd, each parity operator Δð1Þ and Δð2Þ

contains an odd number of Majorana operators. Thus, they
define maps between different sectors. For example, if O is
in the even-even sector, Δð1ÞO, Δð2ÞO, and Δð1ÞΔð2ÞO are in
the odd-even sector, even-odd sector, and odd-odd sector,
respectively. Furthermore, these are maps between eige-
noperators with the same energy because they commute
with the Hamiltonian. Therefore, if the ground-state eige-
noperator is unique in the even-even sector, the total
degeneracy of the ground-state eigenoperators is four.
This means that the ground-state eigenvectors are twofold
degenerate.
In the following discussion, we focus on the even-even

sector. In this sector, an operator is expressed as

OðWÞ ¼
X

α;β∈Ceven

Wα;βΓ
ð1Þ
α Γð2Þ

β ; ð19Þ

where W is a jCevenj × jCevenj matrix. This matrix repre-
sentation plays an essential role in the proof.
Let an operator OðWÞ ∈ Oeven;even be an eigenoperator

of H with eigenvalue E. Then W satisfies the following
two equations [49]:

KW þWK þ
X
x∈Λ

XN
σ;τ¼1

UxLxx;στWLxx;στ ¼ EW; ð20Þ

K⊤W þWK⊤ þ
X
x∈Λ

XN
σ;τ¼1

UxL⊤
xx;στWL⊤

xx;στ ¼ EW; ð21Þ

where ⊤ denotes the transpose. Lxy;στ and K are jCevenj ×
jCevenj Hermitian matrices defined by

ðLxy;στÞα;β ¼ hΓð1Þ
α ;

i
2
γð1Þx;σγ

ð1Þ
y;τΓð1Þ

β i; ð22Þ
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ðKÞα;β ¼
X

x∈A;y∈B

XN
σ¼1

tx;yðLxy;σσÞα;β: ð23Þ

Since Lxy;στ and K are Hermitian, we findW† also satisfies
Eqs. (20) and (21), and hence, OðW†Þ is also an eigenop-
erator with eigenvalue E. Thus, W can be symmetrized or
antisymmetrized to be Hermitian.
Let us define the normalization condition for operators

O ∈ O as hO;Oi ¼ 1, where the inner product is defined
by Eq. (13). Since hOðWÞ; OðWÞi ¼ Tr½W†W�, the nor-
malization condition for HermitianW is Tr½W2� ¼ 1. Under
the normalization condition, the expectation value of H
with respect to O is defined by hO;HOi. We define
EðWÞ ¼ hOðWÞ; HOðWÞi for a normalized Hermitian
matrix W. Then, EðWÞ is calculated as

EðWÞ ¼ 2Tr½KW2� þ
X
x∈Λ

XN
σ;τ¼1

UxTr½WLxx;στWLxx;στ�:

ð24Þ

For a Hermitian matrix W, by diagonalizing it by a unitary
matrix U like W ¼ UDU†; D ¼ diagðλ1;…; λjCevenjÞ, we
can define a new matrix jWj ¼ UjDjU†, where jDj ¼
diagðjλ1j;…; jλjCevenjjÞ. Then we have EðjWjÞ ≤ EðWÞ. If
W is normalized, jWj is also normalized. Therefore, by the
variational principle, if OðWÞ is a ground-state eigenop-
erator, then OðjWjÞ is also a ground-state eigenoperator.
Implication of connectivity.—Here we prove the follow-

ing lemmas, which is essential in the proof of Lemma 4 and
Theorem 2.
Lemma 6.—Consider the attractive SUðNÞ Hubbard

model with N ≥ 3. If a positive semidefinite matrix W
satisfies Eqs. (20) and (21), then W is either positive
definite or zero.
See the Supplemental Material for a proof [49]. The

condition N ≥ 3 comes from this lemma. From Lemma 6,
we can show the following lemma.
Lemma 7.—Consider the attractive SUðNÞ Hubbard

model with N ≥ 3. If a ground-state eigenoperator is
OðWÞ, then W is either positive or negative definite.
Proof of Lemma 7.—LetOðWÞ ∈ Oeven;even be a ground-

state eigenoperator in the even-even sector. Then,OðjWjÞ is
also a ground-state eigenoperator. Thus, jWj −W is a posi-
tive semidefinite matrix which satisfies Eqs. (20) and (21)
with E ¼ EGS. Here, EGS is the ground-state energy.
From Lemma 6, jWj −W is either positive definite or
zero. If jWj −W is positive definite, all eigenvalues of W
are strictly negative, which means that W is negative
definite. If jWj −W is zero, then W ¼ jWj. By using
Lemma 6, jWj is positive definite because jWj is a non-
vanishing positive semidefinite matrix which satisfies
Eqs. (20) and (21). Thus, W is also positive definite.
Therefore, W is positive or negative definite. ▪

We can prove Lemma 4 from Lemma 7.
Proof of Lemma 4 for odd NNs.—Suppose that the

ground-state eigenoperators in the even-even sector are
degenerate. Then, we pick two orthogonal ground-state
eigenoperators OðW1Þ and OðW2Þ. Then, Tr½W†

1W2� ¼
hOðW1Þ; OðW2Þi ¼ 0. But Lemma 7 implies that
Tr½W†

1W2� ≠ 0 [51]. Since this is a contradiction, the
ground-state eigenoperator is unique in the even-even
sector. Therefore, there are exactly two ground states
in total. ▪
We will complete the proof of Theorem 1 for odd NNs

by identifying the SUðNÞ quantum number and the total
fermion number of the ground states.
Proof of Theorem 1 for odd NNs.—First, we determine

the SUðNÞ quantum numbers of the ground states. Note
that the ground-state degeneracy in an SUðNÞ invariant
model is at least N unless the ground states are SUðNÞ
singlets. This, together with Lemma 4, implies that the two
ground states are SUðNÞ singlets.
To determine the fermion number, we consider a toy

model on the same lattice with long-range interactions. The
Hamiltonian of the model is

Htoy ¼
X

x∈A;y∈B

�
nx −

N
2

��
ny −

N
2

�
: ð25Þ

The ground states of the model are twofold degenerate. Let
us write the two ground states as jΦ�i. Then,

nxjΦ�i ¼
( ðN�NÞ

2
jΦ�i if x ∈ A;

ðN∓NÞ
2

jΦ�i if x ∈ B:
ð26Þ

As shown in Ref. [22] (see the Supplemental Material [49]),
jΦþi and jΦ−i are also the ground states of the attractive
SUðNÞ Hubbard model in the large-Ux limit. The fermion
numbers of jΦþi and jΦ−i areNNA andNNB, respectively.
The eigenoperators are written as O� ¼ jΦ�ihΦ�j ¼
2−NNs

Q
x∈Λ

Q
N
σ¼1 ð1� iγð1Þx;σγ

ð2Þ
x;σÞ. Then, 2NNs−1ðOþ þ

O−Þ is in the Oeven;even sector and written as OðIÞ, where
I is the identity matrix of size jCevenj. Let OðWGSÞ ∈
Oeven;even be the ground-state eigenoperator of the original
Hamiltonian H. By Lemma 7, hOðIÞ; OðWGSÞi ¼
Tr½WGS� ≠ 0, because WGS is positive or negative definite.
Suppose we expand OðWGSÞ in an orthonormal basis
of O including jΦþihΦþj and jΦ−ihΦ−j. Since
hOðIÞ; OðWGSÞi ≠ 0, the coefficient of either jΦþihΦþj
or jΦ−ihΦ−j is nonzero.
Let PAðBÞ be the projection operator onto states with

NNA ðNNBÞ fermions. Then, either PAOðWGSÞPA or
PBOðWGSÞPB is nonzero. Since PAðBÞ commutes with
the Hamiltonian, the projected operators are also ground-
state eigenoperators. Therefore, there is a ground state
whose fermion number is NNA or NNB. Because of the
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particle-hole symmetry, if there is a ground state with the
fermion numberNNA (NNB), there must be another ground
state with the fermion number NNB (NNA). Note that
NNA ≠ NNB whenNNs is odd. This, together with Lemma
4, implies that there are exactly two ground states, and the
fermion numbers of the two ground states are NNA and
NNB, respectively. ▪
To prove Theorem 2, we use the following lemma [52].
Lemma 8.—Let M, M0 be D ×D Hermitian matrices.

IfM is positive or negative definite andM0 is nonvanishing,
then

Tr½MM0MM0� > 0: ð27Þ
Proof of Theorem 2 for odd NNs.—We consider the

ground-state expectation value of the operator Sx;y defined
as Eq. (4). First, using the Majorana representation, Sx;y is
expressed as

Sx;y ¼
XN
σ;τ¼1

�
i
2
γð1Þx;σγ

ð1Þ
y;τ

��
−
i
2
γð2Þx;σγ

ð2Þ
y;τ

�
: ð28Þ

When NNs is odd, the ground-state eigenoperators are
fourfold degenerate in total and in the Oeven;even, Oeven;odd,
Oodd;even, Oodd;odd sectors, respectively. Let us first consider
the Oeven;even sector. Assume that the ground-state eigenop-
erator in this sector is expressed as OðWGSÞ, where WGS is
a Hermitian matrix. Then, the expectation value for Sx;y is
calculated as

hOðWGSÞ; Sx;yOðWGSÞi ¼
XN
σ;τ¼1

Tr½WGSLxy;στWGSLxy;στ�;

ð29Þ

where Lxy;στ is a Hermitian matrix defined as Eq. (22).
From Lemma 7,WGS is positive or negative definite. Using
Lemma 8, we obtain Tr½WGSLxy;στWGSLxy;στ� > 0. Thus,
one finds hOðWGSÞ; Sx;yOðWGSÞi > 0.
We next note that the ground-state eigenoperators in

the Oeven;odd, Oodd;even, Oodd;odd sectors are Δð1ÞOðWGSÞ,
Δð2ÞOðWGSÞ, Δð1ÞΔð2ÞOðWGSÞ, respectively. Since both of
Δð1Þ and Δð2Þ commute with Sx;y, the expectation value
of Sx;y does not depend on the choice of the ground state.
If two operators O1; O2 ∈ O are in different sectors,
hO1; Sx;yO2i is zero because each term of Sx;y has the
even number of γð1Þ and γð2Þ fermions. Therefore, we obtain
Eq. (5) for any ground state when NNs is odd. ▪
Summary.—We presented the degeneracy, the fermion

number, and the SUðNÞ quantum number of the ground
state of the attractive SUðNÞ Hubbard model with particle-
hole symmetry. We also showed that the ground state has
the charge density wave long-range order when jNA − NBj
is macroscopically large. One can easily extend our results

to include attractive (repulsive) interactions between two
sites in the same (different) sublattice. Although we
focused on a model with SUðNÞ symmetry, we expect
that our approach will find further applications to N-
component fermionic models with flavor-dependent hop-
ping and interaction [53]. It would also be interesting to
consider the application of the method to other multi-
component fermionic systems such as SO(5) symmetric
models [54].
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