
 

Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems

Tom Beucler ,1,2,* Michael Pritchard ,1 Stephan Rasp ,3 Jordan Ott,4 Pierre Baldi ,4 and Pierre Gentine 2

1Department of Earth System Science, University of California, Irvine, California 92697-3100, USA
2Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, USA

3Technical University of Munich, Boltzmannstr. 3 85748 Garching, Munich, Germany
4Department of Computer Science, University of California, Irvine, California 92697, USA

(Received 17 September 2019; revised 9 November 2020; accepted 1 February 2021; published 4 March 2021)

Neural networks can emulate nonlinear physical systems with high accuracy, yet they may produce
physically inconsistent results when violating fundamental constraints. Here, we introduce a systematic
way of enforcing nonlinear analytic constraints in neural networks via constraints in the architecture or the
loss function. Applied to convective processes for climate modeling, architectural constraints enforce
conservation laws to within machine precision without degrading performance. Enforcing constraints also
reduces errors in the subsets of the outputs most impacted by the constraints.
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Introduction.—Many fields of science and engineering
(e.g., fluid dynamics, hydrology, solid mechanics, chemistry
kinetics) have exact, often analytic, closed-form constraints,
i.e., constraints that can be explicitly written using analytic
functions of the system’s variables. Examples include trans-
lational or rotational invariance, conservation laws, or
equations of state. While physically consistent models
should enforce constraints to within machine precision,
data-driven algorithms often fail to satisfy well-known
constraints that are not explicitly enforced. In particular,
neural networks (NNs) [1], powerful regression tools for
nonlinear systems, may severely violate constraints on
individual samples while optimizing overall performance.
Despite the need for physically informed NNs for

complex physical systems [2–5], enforcing hard con-
straints [6] has been limited to physical systems governed
by specific equations, such as advection equations [7–9],
Reynolds-averaged Navier-Stokes equations [10,11], boun-
dary conditions of idealized flows [12], or quasigeostro-
phic equations [13]. To address this gap, we introduce a
systematic method to enforce analytic constraints arising in
more general physical systems to within machine precision,
namely, the architecture-constrained NN or ACnet. We
then compare ACnets to unconstrained (UCnets) and loss-
constrained NNs (LCnets, in which soft constraints are
added through a penalization term in the loss function, e.g.,
Refs. [14–16]) in the particular case of climate modeling,
where the system is high dimensional and the constraints
(such as mass and energy conservation) are few but
crucial [17].
Theory.—Formulating the constraints: Consider a NN

mapping an input vector x ∈ Rm to an output vector
y ∈ Rp. Enforcing constraints is easiest for linearly-
constrained NNs, i.e., NNs for which the constraints ðCÞ
can be written as a linear system of rank n:

ðCÞ ¼def
�
C

�
x

y

�
¼ 0

�
: ð1Þ

We call C ∈ Rn ×Rmþp the constraints matrix, and use
bold font for vectors and tensors to distinguish them from
scalars. For the regression problem to have nonunique
solutions, the number of independent constraints n has to
be strictly less than mþ p.
In Fig. 1, we consider a generic regression problem

subject to analytic constraints ðCÞ that may be nonlinear,
and propose how to formulate a linearly constrained NN.
First, define the regression’s inputs x0 and outputs y0,
which, respectively, become the temporary NN’s features
and targets. Then (formulation 1), write the constraints ðCÞ
as an identically zero function c of the inputs, the outputs,
and additional parameters z the constraints may involve.
We recommend nondimensionalizing all variables to facili-
tate the design, interpretation, and performance of the loss
function. While the function c may be nonlinear, it can
always be written as the sum of (i) terms x that only depend
on inputs and (ii) terms y that depend on inputs, outputs,
and additional parameters. Thus the constraints can be
written as

cðx0; y0; zÞ ¼ C

�
xðx0Þ

yðx0; y0; zÞ

�
; ð2Þ

where C is a matrix. Finally (formulation 2), choose x and y
as the NN’s new inputs and outputs. If x and y are not
bijective functions of ðx0; y0Þ, add variables to the NN’s
inputs and outputs to recover x0 and y0 after optimization
(e.g., we add x0;t and y0;t−1 to x in example 2). We are now
in a position to build a computationally efficient NN that
satisfies the linear constraints ðCÞ.
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Enforcing the constraints: Consider a NN trained on
preexisting measurements of x and y. For simplicity’s sake,
we measure the quality of its output yNN using a standard
mean-squared error (MSE) misfit:

MSEðyTruth; yNNÞ ¼def kyErrk2 ¼def
1

p

Xp
k¼1

y2Err;k; ð3Þ

where we have introduced the error vector, defined as the
difference between the NN’s output and the “truth”:

yErr¼defyNN − yTruth: ð4Þ

In the reference case of an “unconstrained network”
(UCnet), we optimize a multilayer perceptron [18,19] using
MSE as its loss function L. To enforce the constraints ðCÞ
within NNs, we consider two options: (i) Constraining the
loss function (LCnet, soft constraints).—We first test a soft
penalization of the NN for violating physical constraints
using a penalty P, defined as the mean-squared residual
from the constraints:

Pðx; yNNÞ ¼def
����C

�
x

yNN

�����
2

;

¼ 1

n

Xn
i¼1

�Xm
j¼1

Cijxj þ
Xp
k¼1

CiðkþmÞyNN;k

�2

; ð5Þ

and given a weight α ∈ ½0; 1� in the loss function L:

LðαÞ ¼ αPðx; yNNÞ þ ð1 − αÞMSEðyTruth; yNNÞ: ð6Þ

(ii) Constraining the architecture (ACnet, hard con-
straints).—Alternatively, we treat the constraints as hard
and augment a standard, optimizable NN with n fixed con-
servation layers that sequentially enforce the constraints ðCÞ

to within machine precision (Fig. 2), while keeping the
MSE as the loss function:

ðACnetÞ ⇒ fmin MSE s:t: C½ x yNN �T ¼ 0g: ð7Þ

The optimizable NN calculates a “direct” output whose size
is p − n. We then calculate the remaining output’s compo-
nents of size n as exact “residuals” from the constraints.
Concatenating the direct and residual vectors results in the
full output yNN that satisfies the constraints to within
machine precision. Since our loss uses the full output
yNN, the gradients of the loss function are passed through
the constraints layers during optimization, meaning that the
final NN’s weights and biases depend on the constraints
ðCÞ. ACnet improves upon the common approach of
calculating residual outputs after training because ACnet
exposes the NN to residual output data during training (see
Supplemental Material [20] C.3). A possible implementa-
tion of the constraints layer uses custom (Tensorflow in our
case) layers with fixed parameters that solve the system of
equations ðCÞ, in row-echelon form, from the bottom to the
top row (Supplemental Material [20] B.1). Note that we are
free to choose which outputs to calculate as residuals,
which introduces n new hyperparameters (Supplemental
Material [20] B.2).

FIG. 1. Framework to treat constrained regression problems using linearly constrained NNs, with two examples: (i) A regression
problem with one nonlinear constraint, and (ii) a time-prediction problem with one differential nonlinear constraint that we discretize
using a forward Euler method of timestep Δt. Note that the choice of x, y, and C is not unique.

FIG. 2. ACnet: Direct outputs are calculated using a standard
NN, while the remaining outputs are calculated as residuals from
the fixed constraints layers.
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Linking constraints to performance: Intuitively, we
might expect the NN performance to improve once we
enforce constraints arising in physical systems with few
degrees of freedom, but this may not hold true with many
degrees of freedom. We formalize the link between con-
straints and performance by (i) decomposing the NN’s
prediction into the truth and error vectors following Eq. (4);
and (ii) assuming that constraints exactly hold for the truth
(no errors in measurement). This yields

C

�
x

yNN

�
¼def C

�
x

yTruth

�zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{0

þC

�
0

yErr

�
: ð8Þ

Equation (8) relates how much the constraints are violated
to the error vector. More explicitly, if we measure perfor-
mance using the MSE, we may square each component of
Eq. (8). The resulting equation links how much physical
constraints are violated to the squared error for each
constraint of index i ∈ ⟦1; n⟧:

�
C

�
x

yNN

��
2

i|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Physical constraints

¼
Xp
k¼1

C2
iðkþmÞy

2
Err;k|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Squared-error>0

þ
Xp
k¼1

X
l≠k

CiðkþmÞCiðlþmÞyErr;kyErr;l
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cross-term

ð9Þ

In ACnets, we strictly enforce physical constraints,
setting the left-hand side of Eq. (9) to 0, within numerical
errors. As the squared error is positive definite, the cross
term is always negative in ACnets as both terms sum up
to 0. It is difficult to predict the cross term before
optimization, hence Eq. (9) does not provide a priori
predictions of performance, even for ACnets. Instead, it
links how much the NN violates constraints to how well it
predicts outputs that appear in the constraints equations: the
more negative the cross term, the larger the squared error
for a given violation of physical constraints.
Application.—Convective parametrization for climate

modeling: The representation of subgrid-scale processes
in coarse-scale, numerical models of the atmosphere,
referred to as subgrid parametrization, is a large source
of error and uncertainty in numerical weather and climate

prediction [29,30]. Machine-learning algorithms trained on
fine-scale, process-resolving models can improve subgrid
parametrizations by faithfully emulating the effect of fine-
scale processes on coarse-scale dynamics [21,31–33] ([see
Sec. 2 of Ref. [34] for a detailed review). The problem is
that none of these parametrizations exactly follow con-
servation laws (e.g., conservation of mass, energy). This is
critical for long-term climate projections, as the spurious
energy production may both exceed the projected radiative
forcing from greenhouse gases and result in large thermo-
dynamic drifts or biases over a long time period. Motivated
by this shortcoming, we build a NN parametrization of
convection and clouds that we constrain to conserve 4
quantities: column-integrated energy, mass, long-wave
radiation, and short-wave radiation.
Model and data: We use the Super-Parameterized

Community Atmosphere Model 3.0 [35] to simulate the
climate for two years in aquaplanet configuration [36],
where the surface temperatures are fixed with a realistic
equator-to-pole gradient [37]. Following the sensitivity
tests of Ref. [32], we use 42M samples from the simu-
lation’s first year to train the NN (training set) and 42M
samples from the simulation’s second year to validate the
NN (validation set). Since we use the validation set to adjust
the NN’s hyperparameters and avoid overfitting, we addi-
tionally introduce a test set using 42M different samples
from the simulation’s second year to provide an unbiased
estimator of the NN performances. Note that each sample
represents a single atmospheric column at a given time,
longitude, and latitude.
Formulating the conservation laws in a neural network:

The parametrization’s goal is to predict the rate at which
subgrid convection vertically redistributes heat and water
based on the current large-scale thermodynamic state. We
group all variables describing the local climate in an input
vector x of size 304 (5 vertical profiles with 30 levels each,
prescribed large-scale conditions LS for all profiles of size
150, and 4 scalars):

x ¼ ½ ðqv; ql; qi;T; v;LS; ps; S0Þ SHF LHF �T; ð10Þ

where all variables are defined in Supplemental Material
[20], Sec. A. We then concatenate the time tendencies from
convection and the additional variables involved in the
conservation laws to form an output vector y of size 216
(7 vertical profiles with 30 levels, followed by 6 scalars):

y ¼ ½ _qv _ql _qi _T _TKE lw sw LWt LWs SWt SWs P Pi �T: ð11Þ

We normalize all variables to the same units before nondimensionalizing them using the constant 1 Wm−2

(Supplemental Material [20] A.5). Finally, we derive the dimensionless conservation laws (Supplemental Material [20]
A.1–A.4) and write them as a sparse matrix of size 4 × ð304þ 218Þ:
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C ¼

2
6664
0 1 ls −lsδp −lfδp 0 −δp δp 0 0 −1 1 1 −1 −lf lf

0 0 1 −δp −δp −δp 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 δp 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 δp 0 0 −1 1 0 0

3
7775; ð12Þ

that acts on x and y to yield Eq. (1).
Each row of the constraints matrix C describes a different

conservation law: The first row is column-integrated
enthalpy conservation (here equivalent to energy conser-
vation), the second row is column-integrated water con-
servation (here equivalent to mass conservation), the third
row is column-integrated long-wave radiation conservation
and the last row is column-integrated short-wave radiation
conservation.
Implementation: We implement the three NN types and

a multilinear regression baseline using the Tensorflow
library [38] version 1.13 with Keras [39] version 2.2.4:
(i) LCnets for which we vary the weight α given to
conservation laws from 0 to 1 [Eq. (6)], (ii) our reference
ACnet, and (iii) UCnet, i.e., an unconstrained LCnet of
weight α ¼ 0. In our reference ACnet, we write the
constraints layers in Tensorflow to solve the system of
equations ðCÞ from bottom to top, and calculate surface
tendencies as residuals of the conservation equations
(Supplemental Material [20] B.1); switching the residual
outputs to different vertical levels does not significantly
change the validation loss nor the constraints penalty
(Supplemental Material [20] B.3). After testing multiple
architectures and activation functions (Supplemental
Material [20] C.2), we chose 5 hidden layers of 512 nodes
with leaky rectified linear-unit activations as our standard
multilayer perceptron architecture, resulting in ∼1.3 M
trainable parameters. We optimized the NN’s weights
and biases with the RMSprop optimizer [40] for LCnets

(because it was more stable than the Adam optimizer [41]),
used Sherpa for hyperparameter optimizations [42], and
saved the NN’s state of minimal validation loss over 20
epochs.
Results: In Fig. 3(a), we compare mean performance

(measured by MSE) and by how much physical constraints
are violated (measured by P) for the three NN types.
As expected, we note a monotonic trade-off between
performance and constraints as we increase α from 0 to
1 in the loss function. This trade-off is well measured by
MSE and P across the training, validation, and test sets
(Supplemental Material [20] Table V). Interestingly, the
physical constraints are easier to satisfy than reducing MSE
in our case, likely because it is difficult to deterministically
predict precipitation, which is strongly non-Gaussian,
inherently stochastic, and whose error contributes to a
large portion of MSE. Despite this, UCnet may violate
physical constraints more than our multilinear regression
baseline.
Our first key result is that ACnet performs nearly as well

as our lowest-MSE UCnet on average (to within 3%) while
satisfying constraints to ∼ð10−9%Þ (Supplemental Material
[20] C.1). This result holds across the training, validation
and test sets (Supplemental Material [20] Table IV). In our
case, ACnets perform slightly less well than UCnet because
they are harder to optimize and the residual outputs exhibit
systematically larger errors (Supplemental Material
[20] B.2). This systematic, unphysical bias can be remedied
by multiplying the weights of these residual outputs in the

(a) (b)

FIG. 3. (a) MSE and P averaged over all samples of the test dataset for UCnet, LCnets of varying α, and ACnet. The dashed lines
indicate MSE and P for our multilinear regression baseline. (b) Mean-squared error in the thermodynamic term (THERMO) and the
enthalpy residual (RESID) versus latitude for our lowest-MSE NN in each category.
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loss function (Supplemental Material [20] B.3) by a factor
β > 1 (Supplemental Material [20], Eq. 12 and Fig. 2). β
can be objectively chosen alongside the residual outputs via
formal hyperparameter optimization (Supplemental
Material [20] C.2).
In Fig. 3(b), we compare how much the NNs violate

column energy conservation (RESID) to the prediction of a
variable that appears in that constraint: the total thermo-
dynamic tendency in the enthalpy conservation equation
(THERMO):

�
C

�
x

yNN

��
1

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{RESID

¼ δp · ð _TKE − _T − ls _qv − lf _qlÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{THERMO

þ � � � ;

ð13Þ

where the ellipsis includes the surface fluxes, radiation, and
precipitation terms. ACnet predicts THERMO more accu-
rately than all NNs (full blue line) by an amount closely
related to how much each NN violates enthalpy conserva-
tion (dashed lines), followed by LCnet (full green line).
This yields our second key result: Enforcing constraints,
whether in the architecture or the loss function, can
systematically reduce the error of variables that appear
in the constraints. This result holds true across the training,
validation, and test sets (Supplemental Material [20]
Fig. 4). However, possibly since our case has many degrees
of freedom, it does not hold true for individual components
of THERMO as their cross term in Eq. (9) is more negative
for ACnet, nor does it hold for variables that are hard to
predict deterministically (e.g., precipitation). Additionally,
obeying conservation laws does not guarantee the ability to
generalize well far outside of the training set, e.g., in the
Tropics of a warmer climate (see Fig. 3 of Ref. [43]). These
results nuance the finding that physically constraining NNs
systematically improves their generalization ability, which
has been documented for machine learning emulation of
low-dimensional idealized flows [5,12], and motivate
physically constraining machine-learning algorithms
capable of stochastic predictions [44] that are consistent
across climates [43].
Finally, although the mapping presented in Sec. III has

linear constraints, ACnets can also be applied to nonlinearly
constrained mappings by using the framework presented in
Fig. 1.We give a concrete example in SupplementalMaterial
[20], Sec. D, where we introduce the concept of “conversion
layers” that transform nonlinearly constrainedmappings into
linearly constrained mappings within NNs and without
overly degrading performance (Supplemental Material
[20] Table IX). Additionally, ACnets can be extended to
incorporate inequality constraints on their direct outputs (by
using positive-definite activation functions, discussed in
Supplemental Material [20] E), making ACnets applicable
to a broad range of constrained optimization problems.
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