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3Department of Computer Science & Vermont Complex Systems Center, University of Vermont, Burlington, Vermont 05405, USA

(Received 22 April 2020; revised 2 November 2020; accepted 21 January 2021; published 1 March 2021)

Recommendations around epidemics tend to focus on individual behaviors, with much less efforts
attempting to guide event cancellations and other collective behaviors since most models lack the higher-
order structure necessary to describe large gatherings. Through a higher-order description of contagions on
networks, we model the impact of a blanket cancellation of events larger than a critical size and find that
epidemics can suddenly collapse when interventions operate over groups of individuals rather than at the
level of individuals. We relate this phenomenon to the onset of mesoscopic localization, where contagions
concentrate around dominant groups.

DOI: 10.1103/PhysRevLett.126.098301

Standard disease models reduce the complexity of
epidemics to simple processes that provide useful insights.
In fact, many of the key results of these models provide the
foundation for our current understanding and forecasting
of novel emerging epidemics [1–3]. The reduction of the
complex to the simple is perhaps best embodied by the
mass-action approximation [4]. This assumption essentially
means that we are considering a randomly mixed popula-
tion, ignoring household structures, social gatherings, and
the different behaviors of different individuals. Mass-action
models are thus seriously limited, since they focus on the
average number of infections caused by each case, the basic
reproduction number R0 [5], and ignore the underlying
heterogeneity [6]. There are also conceptual issues with
the design of targeted interventions when relying on the
mass-action assumption. Where should we target our
interventions, and what should be their impact? In this
Letter, we address these questions through higher-order
contact patterns.
Network science provides a natural framework to go

beyond the mass-action approximation by considering key
features of the structure of contacts among individuals. The
simplest generalization is perhaps the heterogeneous pair
approximation—individuals are nodes categorized by their
number of contacts and their state, and the contacts are
distinguished by the states of the nodes involved [7]. At this
level of sophistication, all pairwise contacts of a given state
are still, a priori, equivalent.
One developing area in network science concerns

dynamical processes on higher-order representation of
networks, i.e., where the network is not simply a con-
glomerate of pairwise interactions but where interactions
occur in a coordinated manner because of a higher-level
organization (schools, households, events, etc.) [8]. For
dynamics on higher-order networks, one straightforward

generalization of the framework just described is the
heterogeneous clique approximation [9]. Nodes are cat-
egorized by their state and membership, i.e., the number m
of groups to which they belong. The groups are charac-
terized by their size n, and the states of the nodes involved.
Let us consider contagion processes on a simple version

of higher-order networks, see Fig. 1. The network is
characterized by gm, the distribution for the memberships
m of nodes and pn, the distribution for the sizes n of
groups. We use different heterogeneous distributions for
both of them, gm ∝ m−γm and pn ∝ n−γn , with finite cutoffs
mmax and nmax, respectively.
For mathematical convenience, we use a susceptible-

infected-susceptible (SIS) dynamics. However, our results
have repercussions for a much broader class of dynamical
processes, including susceptible-infected-recovered (SIR)
dynamics where individuals develop immunity. Infected

FIG. 1. Framework for contagions on higher-order networks.
Nodes are assigned tom groups and groups are of various sizes n,
distributed according to gm and pn. We consider a SIS dynamics
where infected nodes transmit the disease in a group of size n at
rate βn−ν with ν ∈ ½0; 1�, and recover at rate μ. We characterize
the phenomenon of mesoscopic localization, namely the con-
centration of infected nodes in large groups.
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nodes transmit the disease to susceptible nodes belonging
to a same group of size n at rate βn−ν with ν ∈ ½0; 1�, and
recover at rate μ. It is equivalent to a standard SIS model on
networks formed of cliques [9,10], but the edges have
weights n−ν. We recover an unweighted network for ν ¼ 0.
The parameter ν tunes the strength of interactions within
groups, which we assume to be decreasing with size. For
instance, an individual in a workplace typically interacts
with more people than at home, but interactions in a
household are stronger.
We track smðtÞ, the probability for a node of membership

m to be susceptible, and cn;iðtÞ, the probability to observe i
infected nodes within a group of size n. Their dynamics are
described by the following coupled ordinary differential
equations [9],

dsm
dt

¼ μð1 − smÞ −mrsm; ð1aÞ

dcn;i
dt

¼ μðiþ 1Þcn;iþ1 − μicn;i

þ ðn − iþ 1Þfβn−νði − 1Þ þ ρgcn;i−1
− ðn − iÞfβn−νiþ ρgcn;i; ð1bÞ

with the mean fields rðtÞ and ρðtÞ defined as

rðtÞ ¼
P

n;iβn
−νiðn − iÞcn;iðtÞpnP

n;iðn − iÞcn;iðtÞpn
; ð2aÞ

ρðtÞ ¼ rðtÞ
P

mðm − 1ÞmsmðtÞgmP
mmsmðtÞgm

: ð2bÞ

If we take a susceptible node and select a random group
to which it belongs, rðtÞ is the mean infection rate
associated to that group. Now if we pick a susceptible
node in a group, ρðtÞ is the mean infection rate received
from all external groups (i.e., excluding the one we picked
the node from). Without loss of generality, we set μ ¼ 1
hereafter.
An important feature of this framework is that Eq. (1b) is

an approximate master equation: it describes the full
range of possible states for groups of size n, while assuming
a mean-field coupling between them. As we show in
Ref. [11], the agreement with Monte Carlo simulations is
excellent. The global prevalence in the network—the
average fraction of infected nodes—is then

IðtÞ ¼
X
m

½1 − smðtÞ�gm; ð3Þ

and the group prevalence is

InðtÞ ¼
X
i

i
n
cn;iðtÞ: ð4Þ

In Figs. 2(a) and 2(b), we show the stationary prevalence
(global and within groups) for two different networks,
obtained using Eq. (1). As expected from standard models,
there exists an epidemic threshold βc for the transmission
rate below which epidemics cannot be sustained (see
Ref. [11] for an analytical expression of βc). Above βc,
the disease-free equilibrium of the dynamics becomes
unstable, driving the epidemic to invade the network.
What is less expected are the sequential local transitions

observed in the second panel [Fig. 2(b)]. For any value of

(a) (b) (c)

FIG. 2. Epidemic localization in networks with heterogeneous higher-order structures. We use ν ¼ 0 for all panels and power-law
distributions for the memberships gm ∝ m−γm and group sizes pn ∝ n−γn . (a),(b) Solid lines represent the stationary group prevalence and
dashed lines represent the stationary global prevalence. (a) For strongly coupled groups ðγm ¼ γn ¼ 2.2Þ, we find a collective phase
transition. (b) For weakly coupled groups ðγm ¼ 4; γn ¼ 3.5Þ, we find a phenomenon of mesoscopic localization. While the global
prevalence in the population can remain extremely low, larger groups can self-sustain the epidemic. The vertical dotted line is an
estimation of the delocalization threshold, where the epidemic invades the whole network (see Ref. [11]). (c) Mesoscopic localization is
the rule rather than the exception. The solid line, γm þ γn ¼ 5, separates the delocalized regime (blue area of strong group coupling)
from the mesoscopic localization regime (green area of weak group coupling), obtained from Eqs. (8a) and (8b). The circle and diamond
markers correspond to the networks in panels (a),(b).
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the transmission rate, the outbreak thrives only in groups
above a certain size. The epidemic is self-sustained locally,
and the global prevalence reaches its highest growth rate
with β well above the epidemic threshold, a defining feature
of smeared phase transitions [12,13]. This is reminiscent of
certain infections, such as the bacteria C. difficile, mainly
found in hospitals with large susceptible populations in
close contact [14].
To get some insights on the emergence of this localiza-

tion phenomenon, we examine the stationary group preva-
lence I�n near the absorbing state. Using a saddle-point
approximation valid for large n, we obtain [11]

I�n ∼

( 1
1 − βn1−ν

if β < nν−1

n1=2ðβn1−νÞne−nþnν=β if β ≥ nν−1:
ð5Þ

For β > nν−1, this implies I�n ¼ Oðn1=2ebnÞ with b > 0.
Therefore, if βc → nν−1max, the group prevalence increases
exponentially with n above the epidemic threshold, and
the outbreak is localized in large groups, as observed in
Fig. 2(b). In other words, the behavior of the epidemic
threshold dictates whether or not localization is possible for
a given network organization.
In Ref. [11], we show that for power-law distributions

of membership and group size, we have the following
behavior:

β−1c ∼Ωðgm; pn; νÞ þ n1−νmax; ð6Þ

where we define the coupling between groups as

Ωðgm; pn; νÞ ¼
�hmðm − 1Þi

hmi
��hn1−νðn − 1Þi

hni
�
: ð7Þ

Asymptotic analysis of Eqs. (6) and (7) in the limit
nmax → ∞ reveals the conditions for which βc → nν−1max,
i.e., the conditions necessary for a localized epidemic [11].
They require ν < 1, and are always met whenever γm ≥ 3.
If 2 < γm < 3, the conditions are then satisfied only if

2 < γn þ ν < 3 and 3 − γn þ αð3 − γmÞ < 1; ð8aÞ

or

γn þ ν ≥ 3 and αð3 − γmÞ þ ν < 1; ð8bÞ

where α ≥ 0 relates the two cutoffs mmax ∼ nαmax. These
conditions define mesoscopic localization and distinguish
the localized regime from the delocalized regime. We give
some examples with ν ¼ 0 and α ¼ 1 in Fig. 2(c).
More intuitively, the conditions (8a) and (8b) can be

interpreted as the result of a competition between a collective
and a local activation [15]. All pairs of ðγm; γnÞ below the
dark dividing line in Fig. 2(c) are associated with a strong

group coupling (Ω ≫ n1−νmax), whereas pairs above the line
correspond to a weak group coupling (Ω ≪ n1−νmax).
One important observation is that a large fraction of

the structural parameter space ðγm; γnÞ corresponds to the
mesoscopic localization regime [green region in Fig. 2(c)],
making it the rule rather than the exception. Moreover,
the delocalized regime [blue region in Fig. 2(c)] is the
parameter subspace where the underlying networks are
dense, i.e, where the average number of contacts of a node,
proportional to hnðn − 1Þi, diverges in the asymptotic limit.
Since real-world networks are generally sparse [16,17], it is
reasonable to assume mesoscopic localization may occur in
many real-world networks with a higher-level organization.
The results of Fig. 2 extend nicely to cases with ν > 0 (see
Ref. [11], Appendix E) where the localized regime still
dominates in a large portion the structural parameter space.
It is worth noting that we only observe localization

for a certain portion β ∈ ½βc; β�� of the bifurcation diagram,
where β� is the delocalization threshold [dotted line in
Fig. 2(b)]. In Ref. [11], we show how to estimate β� and
discuss other details of the localization regimes, notably the
effects of finite cutoffs.
Perhaps most surprising about mesoscopic localization is

how strong the effect can be. Even at low overall preva-
lence, we observe intense but local outbreaks in large
groups. This simple observation justifies targeted inter-
ventions on these groups, analogous to school closures and
the cancellation of large social or professional events.
While such closures may seem excessive given the low
prevalence found in the general population, these compact
organized groups are where most infections will occur.
We now focus on targeted interventions on large groups,

modeled by simply forcing a hard cutoff nmax on the
distribution pn. By using a cutoff instead of immunizing the
groups, we preserve the membership m of nodes; they will
simply belong to groups of smaller sizes.
To compare the effectiveness of interventions across

different networks and parametrizations, we define an
intervention strength ψ as the fraction of the total edge
weights that have been removed. If pn and p̃n are,
respectively, the group size distribution before and after
the intervention, then

ψ ¼ 1 −
P

nn
1−νðn − 1Þp̃nP

nn
1−νðn − 1Þpn

: ð9Þ

In Fig. 3, we show the local impact on the group
prevalence for such structural interventions. For networks
in the delocalized regime [Fig. 3(a)], the intervention
appears to reduce the risk of infections at the individual
(node) level. As we decrease nmax (and therefore increase
the intervention strength), the local prevalence within all
groups decreases gradually and homogeneously until an
epidemic threshold is reached. This is similar to traditional

PHYSICAL REVIEW LETTERS 126, 098301 (2021)

098301-3



models where interventions reduce R0 in a distributed,
mass-action way.
In the localized regime [Fig. 3(b)], the intervention has a

very different impact. Individuals that would have inter-
acted in groups of size greater than nmax are spared by the
intervention, but the large groups of sizes below nmax
appear unaffected by the intervention. The main point here
is that a local outbreak in certain organized gatherings (e.g.,
mass transit in urban centers, cruise ships) can persist
despite interventions elsewhere. However, once the inter-
vention is strong enough [roughly when nmax is below 25
in Fig. 3(b)], further interventions cause a rapid collapse of
the epidemic.
Let us now look at the global impact of these interventions

in Fig. 4. It is important to note that whilewe have assumed a
SIS dynamics, our results hold for a SIR dynamics as well
[see the similarity of Figs. 4(a) and 4(b)], which is generally
a more realistic model for epidemics. The reason is that
smeared phase transitions occur for this type of process as
well [13].
In Fig. 4(a), we observe that the global impact of

interventions in the delocalized regime is again similar
to mass-action models—the prevalence decreases approx-
imately linearly with the intervention strength. In contrast,
in the localized regime, the intervention has a rapid non-
linear effect in reducing the global prevalence as its strength
is ramped up.
In both Figs. 3(b) and 4(a), it is surprising that the

removal of the largest groups does not produce the largest
decrease in prevalence, since these are the ones in which we
expect most nodes to be infected. Even less clear is what
drives the sudden collapse and if we should expect this
behavior for all localized epidemics.

To clarify the situation, we need to explore the regimes
between the delocalized and the strongly localized regimes
displayed in Figs. 3(b), 4(a), and 4(b). We break down
these regimes in three parts in Fig. 4(c) to simplify the
discussion: (1) strongly localized, (2) weakly localized, and

(a) (b)

FIG. 3. Local impact of structural interventions in delocalized
and localized epidemics. (a),(b) Prevalence within groups of size
n against the intervention strength [Eq. (9)]. We use the networks
from Figs. 2(a) and 2(b) with transmission rates adjusted to have
similar global prevalence for both regimes without intervention.
(a) In the delocalized regime, using β ≈ 0.0041, we find a similar
benefit of the intervention among all groups. (b) In the meso-
scopic localization regime, using β ¼ 0.07, we find a different
story. Large groups that have not been removed by the inter-
vention are barely affected, until the intervention is strong enough
to cause a global collapse of the epidemic. Square markers
indicate when groups of a particular size are removed.

(a)

(c)

(d) (e)

(b)

FIG. 4. Global impact of structural interventions in different
localization regimes of SIS and SIR dynamics. (a)We compare the
global prevalence of epidemics against the intervention strength
[Eq. (9)] using the same networks as in Fig. 3. We use
β∈f0.004;0.005;0.006;0.007g and β ∈ f0.07; 0.09; 0.11; 0.13g
for the delocalized and localized regimes. (b) A similar behavior is
observed for the final size (fraction of recovered nodes at t → ∞)
in simulations of the SIR dynamics [18]. We generate 1000
networks of size N ¼ 106 and run 104 SIR simulations on each
network, starting with a single random infected node, with
β ¼ 0.0036 in the delocalized regime and β ¼ 0.083 in the
localized regime. We only kept macroscopic outbreaks, with a
final size over 10−3. Solid and dashed lines are sample means and
the shaded regions represent twice the standard deviation. (c)Three
examples of cn;i distributions for (1) strongly localized, (2) weakly
localized, and (3) delocalized epidemics, using ν equal 0, 0.6,
and 1 respectively. We used networks with γm ¼ γn ¼ 3.5 and
β ¼ 0.3=hki, where hki is the average weighted degree before
interventions. (d) We look at the impact of interventions
for intermediate localization regimes by varying ν with the
same networks as in (c). (e) Schematic representation of how
the impact of interventions varies as it passes through different
localization regimes.
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(3) delocalized. In the strongly localized regime (1), large
groups have a high prevalence, and act as independent
entities that are barely affected by interventions elsewhere
[as in Fig. 3(b)]. In the weakly localized regime (2), the
disease still thrives in large groups, but they are not isolated
from one another—interventions in one group now affect
the others as well. This is the regime where interventions
are most effective. Finally, in the delocalized regime (3),
groups act as a whole, but the infection does not thrive in
any of them, leading to a lower effectiveness of targeted
interventions.
The easiest way to interpolate between the two extremes

is to tune the group interaction strength through ν. As
shown in Fig. 4(d), the initial impact of interventions
changes as ν is increased. With ν ¼ 0.6, for instance, the
epidemic is weakly localized, and now the removal of the
largest groups produce the largest decrease in prevalence.
Further interventions become eventually less effective, as
the intervention itself causes the epidemic to shift to a
delocalized regime.
More generally, the nonlinear decrease of the global

prevalence as a function of the intervention strength is
explained by transitions between different localization
regimes, as illustrated in Fig. 4(e). The sudden collapse
for interventions on strongly localized epidemics is thus the
result of a shift to a weakly localized regime, where
interventions become much more effective.
Altogether, the lesson from Figs. 3 and 4 is that, just as

we take heterogeneity of individual risks into account when
preferentially vaccinating individuals, we should take
heterogeneity of group risks into account when designing
interventions. While pathogens operate at the scale of
individuals, epidemics themselves interact with our entire
social network, which has a modular, hierarchical, higher-
order structure. Since we expect real epidemics to expe-
rience localization effects, we should aim to leverage their
sudden collapse when designing structural interventions,
and account for this emergent feature in our models.
Over the last few years, dynamics on higher-order

representation of networks have shown time and time
again that intuition built from simpler models does not
always hold in more complex scenarios, with examples
ranging from competitive dynamics [19] to social con-
tagion [20]. Localization of dynamics over higher-order
structures is yet another addition to this list. Our work thus
paves the way for a more comprehensive analysis of
structural interventions on networks.
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