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The pion-nucleon coupling constants determine the strength of the long-range nuclear forces and play a
fundamental part in our understanding of nuclear physics. While the charged- and neutral-pion couplings to
protons and neutrons are expected to be very similar, owing to the approximate isospin symmetry of the
strong interaction, the different masses of the up and down quarks and electromagnetic effects may result in
their slightly different values. Despite previous attempts to extract these coupling constants from different
systems, our knowledge of their values is still deficient. In this Letter, we present a precision determination
of these fundamental observables with fully controlled uncertainties from neutron-proton and proton-
proton scattering data using chiral effective field theory. To achieve this goal, we use a novel methodology
based on the Bayesian approach and perform, for the first time, a full-fledged partial-wave analysis of
nucleon-nucleon scattering up to the pion production threshold in the framework of chiral effective field
theory, including a complete treatment of isospin-breaking effects and our own determination of mutually
consistent data. The resulting values of the pion-nucleon coupling constants are accurate at the percent level
and show no significant charge dependence. These results mark an important step toward developing a
precision theory of nuclear forces and structure.
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The pion-exchange mechanism drives the low-energy
interaction between protons and neutrons and is of utmost
importance for our understanding of atomic nuclei that make
up 99.9% of the visible Universe and for answering big
science questions such as the origin of the elements, the
limits of nuclear stability, searches for physics beyond the
standard model, and physics of neutron stars. The interaction
of a charged and neutral pion with protons (p) and neutrons
(n) is characterized by three coupling constants fπ0pp, fπ0nn,
and fπ�pn, whose precise definitions will be given below.
These three constants determine the strength of the long- and
intermediate-range nuclear forces originating from exchange
of virtual pions. Their precise knowledge with controlled
uncertainties is, therefore, of fundamental importance for a
quantitative understanding of nuclear physics.
While possible in principle, the ab initio precision

determination of the pion-nucleon (πN) coupling constants
from lattice quantum-chromodynamics (QCD) and quan-
tum-electrodynamics (QED) calculations is presently out of
reach [1]. Attempts have been made to extract fπ�pn from
experimental data on pion-nucleon (πN) scattering [2–4],
pionic atoms [5,6] and proton-antiproton scattering [7], but
the best way to determine all three constants is by analyzing
the abundance of proton-proton (pp) and neutron-proton
(np) scattering data. However, previous studies along this
line [8–12] relied on phenomenological models and offered
no way of a reliable uncertainty quantification apart from
estimating statistical errors.

In this Letter, we determine the values of all three πN
coupling constants from nucleon-nucleon (NN) scattering
data using the model-independent framework of chiral
effective field theory (EFT) [13,14]. This method has
already been applied to NN scattering, and the EFT
expansion of the NN force has been recently pushed to
fifth order (N4LO) [15–17]. The crucial new aspects of the
current investigation include the following.
(i) For the first time, a determination of all three πN

coupling constants and a partial wave analysis of NN data
up to the pion production threshold including the
determination of mutually consistent data are carried out
in the framework of chiral EFT. We have taken into
account all charge-independence-breaking (CIB) and
charge-symmetry-breaking (CSB) isospin-violating NN
interactions up through N4LO. This allowed us to achieve
a statistically perfect description of mutually consistent pp
and np scattering data in the framework of chiral EFT that
is unprecedented in its precision.
(ii) We have succeeded in overcoming the computational

challenge of performing a Bayesian determination of the πN
coupling constants. Contrary to the computationally much
less demanding frequentist methods used in all previous
determinations [8–12,18], the Bayesian approach provides a
rigorous way to calculate the joint conditional probability
density of the πN coupling constants given NN data.
(iii) A careful uncertainty analysis, facilitated by the

usage of Bayesian methods, is performed to estimate not
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only statistical errors in the calculated πN coupling con-
stants, but also systematic uncertainties from the truncation
of the EFT expansion and the choice of the highest energy
of the included NN data—a feature lacking in the earlier
determinations of these quantities.
Definitions of the πN coupling constants.—Consider

first the interaction of the nucleon with the isovector weak
current Aμ

i , which is described in terms of the axial and
induced pseudoscalar form factorsGA andGP, respectively.
In the limit of exact isospin symmetry corresponding to the
equal masses of the up and down quarks and in the absence
of electromagnetic interactions, the matrix element of
Aμ
i ðx ¼ 0Þ between nucleon states can be parametrized via

hNðp0ÞjAμ
i ð0ÞjNðpÞi ¼ ūðp0Þ

�
γμGA þ qμ

2mN
GP

�
γ5

τi
2
uðpÞ;

with uðpÞ and ūðp0Þ the corresponding Dirac spinors, τi
the isospin Pauli matrices, and mN the nucleon mass.
Furthermore, qμ ¼ ðp0 − pÞμ refers to the momentum
transfer of the nucleon. The form factors GAðq2Þ and
GPðq2Þ carry important information about the internal
structure of the nucleon. For example, the axial charge of
the nucleon gA ≡GAð0Þ ¼ 1.2756ð13Þ [19] controls the
decay rate of a neutron to a proton. Recently, this
quantity was calculated from first principles at a percent
level using lattice QCD [20]; see also [21] for a review
of lattice QCD calculations of gA. While GAðq2Þ
is a smooth function near q2 ¼ 0, the induced pseudo-
scalar form factor possesses a pion-pole contribution,
GPðq2Þ¼4mNgπNNFπ=ðM2

π−q2Þþnonpole terms, whose
residue is determined by the (pseudoscalar) πN coupling
constant gπNN . The pion decay constant Fπ ¼ ð92.1�
0.8Þ MeV [19] determines the rate of weak decays
π� → μ�νμ. The strong-interaction constant gπNN
is connected to gA and Fπ entering weak processes via
the celebrated Goldberger-Treiman relation FπgπNN ¼
gAmNð1þ ΔGTÞ, where the small Goldberger-Treiman
discrepancy ΔGT is driven by the nonvanishing masses of
the up and down quarks.
Away from the isospin limit and in the presence of QED,

one has to distinguish between protons and neutrons and
between the charged and neutral pions by introducing three
coupling constants gπ0pp, gπ0nn, and gπ�pn or, equivalently,
the corresponding pseudovector couplings fp ≡ fπ0pp ¼
Mπ�gπ0pp=ð2

ffiffiffiffiffiffi
4π

p
mpÞ, fn≡fπ0nn¼Mπ�gπ0nn=ð2

ffiffiffiffiffiffi
4π

p
mnÞ,

and fc ≡ fπ�pn ¼ Mπ�gπ�pn=½
ffiffiffiffiffiffi
4π

p ðmp þmnÞ�. The deter-
mination of these fundamental constants from NN scatter-
ing data is the main subject of this study.
Chiral EFT for nuclear forces.—We use chiral EFT, an

effective field theory of QCD, to describe the low-energy
interactions between two nucleons and employ the result-
ing NN potential to extract the πN coupling constants from
a combined Bayesian analysis of np and pp scattering data
below the pion production threshold. Chiral EFT utilizes an

expansion in powers of momenta and pion masses to
describe interactions between pions and nucleons in a
systematically improvable way [13,14,22]. The corre-
sponding effective Lagrangian contains all possible terms
compatible with the symmetries of QCD. The nonpertur-
bative dynamics of QCD is encoded in the so-called low-
energy constants (LECs), which control the strength of the
interactions in the effective Lagrangian and can be deter-
mined from experiments or lattice QCD calculations. Chiral
EFT has also been extended to include virtual photons.
Figure 1 shows examples of contributions to the NN force
in chiral EFT. The most important terms at leading order
(LO) include one-pion exchange [Fig. 1(b)] and contact
interactions [Fig. 1(e)]. Two-pion exchange [Fig. 1(d)] and
one-photon exchange [Fig. 1(a)] start to contribute at next-
to-leading order (NLO), while pion-photon exchange
[Fig. 1(c)] appears first at fourth order (N3LO).
In recent years, the chiral expansion of the NN force has

been pushed to fifth order [15–17]. All relevant isospin-
invariant πN LECs have been reliably determined from a
dispersion theory analysis of πN scattering in Ref. [23].
Therefore, the long-range part of the NN interaction
is parameter-free. To avoid distortions of the long-range
forces due to a finite cutoff Λ, we introduced in Ref. [17] an
improved local regulator which respects the analytic
structure of the interaction. The LECs accompanying
short-range operators [Fig. 1(e)] were determined in
Ref. [17] from a fit to the 2013 Granada database [24]
of mutually compatible np and pp data. Furthermore, we
have introduced a N4LOþ NN potential, where the leading
F-wave short-range interactions, formally appearing at
sixth order, were taken into account in order to achieve
a statistically satisfactory description of certain very pre-
cisely measured pp data; see also Ref. [16]. This allowed
us to achieve a description of NN data on par with or even
better than that based on the most precise phenomeno-
logical potentials but with a much smaller number of
adjustable parameters. However, the treatment of isospin-
breaking (IB) effects in Ref. [17] was incomplete and
limited to the one of the Nijmegen [25] and Granada 2013
[24] partial wave analyses (PWA).

(a) (b) (c) (d) (e)

FIG. 1. Diagrammatic illustration of the NN interaction in
chiral EFT. Photons, pions, and nucleons are shown by wavy,
dashed, and solid lines, respectively. Diagrams (a)–(e) are
representative examples of the one-photon exchange, one-pion
exchange (OPE), electromagnetic corrections to the OPE,
two-pion exchange (TPE), and NN short-range contributions,
respectively. The range of interactions decreases from the left to
the right.
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In this Letter, we include the CIB and CSB IB NN
interactions complete up through N4LO. In particular, we
employ the most general form of the OPE potential including
the leading electromagnetic corrections [26] and take
into account the leading and subleading IB two-pion-
exchange contributions [27–29]. These long-range inter-
actions are expressed in terms of known LECs, the
πN coupling constants f2p, f2c, and f20 ≡ fpfn to be
determined, the nucleon mass difference δm¼mn−mp≃
1.29MeV, and its QCD contribution δmQCD¼2.05ð30ÞMeV
[30]; see Ref. [31] for an update and Ref. [32] for a recent
ab initio calculation using lattice QCD and QED. We also
include short-range IB interactions in the 1S0, 3P0, 3P1, and
3P2 partial waves. Details of the employed NN interaction
are given in Supplemental Material [33].
Determination of the πN coupling constants.—We end

up with 33 parameters that need to be determined from NN
data, comprising of three πN LECs f2 ≡ ff2c; f2p; f20g and
25þ 5 LECs Ci from isospin-invariant þ IB short-range
interactions, collectively denoted as C≡ fCig. For
normally distributed errors, the likelihood of data D given
f2, C, and Λ is given by

pðDjf2CΛÞ ¼ 1

N
e−χ

2=2; ð1Þ

where N is a normalization constant. The data D employed
in our analysis include mutually compatible np and pp
scattering data according to our own selection as detailed in
Supplemental Material [33], where we also provide the
definition of the χ2 measure. Using Bayes’ theorem to
relate the probability density function (PDF) pðf2CΛjDÞ of
the parameters given the data to pðDjf2CΛÞ and integrat-
ing over the nuisance parameters C and Λ, we obtain the
quantity we are actually interested in, namely, the PDF of
f2 given the data D:

pðf2jDÞ ¼
Z

dΛdC
pðDjf2CΛÞpðf2CΛÞ

pðDÞ : ð2Þ

For the case at hand, pðDÞ is a (normalization) constant.
Furthermore, we use independent priors for f2, C, and Λ so
that pðf2CΛÞ ¼ pðf2ÞpðCÞpðΛÞ and employ a Gaussian
prior for C and uniform priors for Λ and f2 specified in
Supplemental Material [33]. To determine f2, we need to
find the maximum of pðf2jDÞ in Eq. (2). However, for each
set of f2, this requires integrating over a 31-dimensional
space spanned by Λ and C, which is not feasible. Instead,
we employ the Laplace approximation by fitting C to D for
fixed values of f2 and Λ and expressing the likelihood
pðDjf2CΛÞ as

pðDjf2CΛÞ ≈ 1

N
e−ð1=2Þ½χ2minþð1=2ÞðC−CminÞTHðC−CminÞ�: ð3Þ

Here, χ2min ≡ χ2minðf2;ΛÞ at C min ≡ Cminðf2;ΛÞ
and the Hessian H ≡Hðf2;ΛÞ is given by

Hij ¼ ½ð∂2χ2Þ=ð∂Ci∂CjÞ�jC¼Cmin
. Performing an analytical

integration over C then allows us to cast Eq. (2)
into a numerically tractable form; see Supplemental
Material [33] for details. The remaining integration over
Λ ∈ ½400; 550� MeV is performed numerically. We empha-
size that reducing the amount of information in the
employed priors for C, f2, and Λ has a negligible effect
on our results; see Ref. [33] for details.
To account for the uncertainty inherent in the choice of

the energy range of our PWA, we performed separate
analyses of NN data up to the laboratory energies of
Emax
lab ¼ 220, 240, 260, 280, and 300 MeV. Furthermore, to

address the systematic error stemming from the truncation
of the EFT expansion for IB interactions, we considered
two additional models of the NN interaction that include IB
pion-photon- and two-pion-exchange contributions beyond
N4LO. Our final PDF for the πN coupling constants are
obtained by performing averaging over five values for Emax

lab
and three models for IB interactions in order to account for
the truncation uncertainty at N4LO as detailed in
Supplemental Material [33]. For all considered cases, the
self-consistency of our results is verified by comparing the
quantiles of the χ2 residuals with those of the assumed
normal distribution [33]. Although no further assumptions
regarding the shape of the distributions pðf2jDÞ have been
made, the calculated PDFs pðf2jDÞ are found to follow a
multivariate Gaussian distribution to a very high accuracy.
This is exemplified in Fig. 2 for the case of the central
model and the energy range of Elab ¼ 0–280 MeV. The
distributions pðf2jDÞ can, therefore, be accurately charac-
terized by the central values and errors of the f2i ’s along
with the corresponding correlation coefficients (see
Ref. [33]), which greatly facilitates their averaging as
explained in Supplemental Material, Sec. 6 [33].

(a) (b) (c)

(d) (e) (f)

FIG. 2. Marginal posteriors for the central model and the energy
range of Elab ¼ 0–280 MeV. (a)–(c) show the probability dis-
tributions pðf2i jDÞ in units of 102. (d)–(f) show the joint
distributions pðf2i ; f2j jDÞ in units of 105. Blue solid lines and
filled contours are based on the exact numerical evaluation, while
orange dashed lines and contours represent its approximation by a
multivariate Gaussian distribution as described in the text.
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We can verify the statistical validity of our results
by studying the likelihood at the optimal values of
the parameters. For example, fitting the LECs C for
Λ ¼ 463.5 MeV (see Fig. S1 in Supplemented Material
[33]) and the central values of the f2’s from Eq. (4) in the
range of Elab ¼ 0–280 MeV yields χ2 ¼ 4950.72 for
Ndat ¼ 4926, leading to χ2=Ndat ¼ 1.005. The quantity
χ2=ðNdat − NparÞ − 1 ¼ 0.012, where Npar ¼ 34 (including
Λ), is comparable to half of the standard deviation (s.d.),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðNdat − NparÞ

p ¼ 0.020, expected for a perfect model.
We have also investigated the robustness of our results

with respect to the variation of input parameters.
Specifically, the uncertainty from higher-order πN LECs
entering the two-pion-exchange potential is quantified by
repeating our analysis for 50 sets of these LECs generated
from the central values and covariance matrix of
Ref. [23]. Furthermore, the uncertainty of the QCD con-
tribution δmQCD, even taking its conservative estimate of
�0.30 MeV [30], is found to induce errors in f2i that are
negligibly small compared to the ones given below.
Our final result for the πN coupling constants after the
averaging reads

f2p ¼ 0.0770ð5Það0.8Þb;
f20 ¼ 0.0779ð9Það1.3Þb;
f2c ¼ 0.0769ð5Það0.9Þb; ð4Þ

where the first error (a) is obtained from the marginal
posteriors pðf2jDÞ and includes the statistical and system-
atic errors due to the truncation of the EFT expansion, the
choice of the energy range, and the associated data
selection. The second error (b) reflects the uncertainty in
the higher-order πN LECs. Notice that the present study
can, in principle, be extended to obtain a joint posterior
probability distribution for fi’s and the higher-order πN
LECs that can be useful for uncertainty quantification in
chiral EFT via a combined analysis of the NN data and the
experimental or empirical information on the πN scattering
amplitude; see Ref. [71] for a related work.
Discussion of the results.—Our results for f2i are

compared in Fig. 3 with selected earlier determinations.
Similarly to the Granada PWA, we find considerably larger
values for the coupling constants as compared to the ones
recommended by the Nijmegen group [9]. As already found
in Ref. [12], this difference cannot be explained by the new
experimental data since 1993 (see Supplemental Material
[33] for more details), thus pointing toward a possible
sizable systematic uncertainty from the interaction model-
ing in the Nijmegen PWA. Our value for f2c is consistent
with the determinations from the πN system in Refs. [3–6]
(at the 1.3σ level). The results for f20 and f2c agree within
errors with the recent determination by the Granada group
[12], while for f2p we obtain a slightly larger value.
However, contrary to the Granada group that found

evidence that the coupling of neutral pions to neutrons
is larger than to protons, f20 − f2p ¼ 0.0029ð10Þ [12], our
result f20 − f2p ¼ 0.0010ð10Það2Þb is consistent with no
charge dependence. This difference may point to significant
systematic uncertainties in the analysis by the Granada
group [12] which are not quantified in that paper, in
particular, due to the cutoff radius rc and phenomenological
modeling of the interaction. In contrast, our analysis relies
on the systematically improvable EFT framework and takes
into account model-independent long- and intermediate-
range nuclear interactions due to exchange of virtual pions
and photons. This allows us to substantially reduce the
number of adjustable parameters (33 in our analysis versus
55 in Ref. [12]) while still achieving at least a comparable
description of NN data below the pion production thresh-
old. Compared to the Granada analysis, we also do not find
a large anticorrelation between f20 and f2c; see Table V
in Ref. [33].

FIG. 3. Values for the πN coupling constants. The data points
show selected determinations of the πN coupling constants f20,
f2p, and f2c. The results were obtained using πN PWA [2] (filled
triangle), fixed-t dispersion relations of πN scattering [3,4] (filled
dots), πN scattering lengths in combination with the GMO sum
rule [5,6] (filled squares), proton-antiproton PWA [7] (open
triangle), and NN PWA [8–11,18] including the 2017 Granada
PWA from Navarro Pérez, Amaro, and Ruiz Arriola [12] (open
diamonds). When provided separately, the statistical and sys-
tematic uncertainties are added in quadrature. The vertical bands
show our full uncertainty. Uncertainties are one s.d.
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In summary, our Bayesian determination of the πN
coupling constants from np and pp scattering data in the
framework of chiral EFT yields new reference values for
these fundamental observables, accurate at the percent
level. It provides new insights into the isospin symmetry
of the strong interaction at the hadronic level by quantify-
ing the charge dependence of these quantities. Our work
also establishes important benchmarks for future first
principles calculations using lattice QCD and QED (see
[32] for a first step along this line) and opens the door for
precision studies of nuclear structure and reactions by
fixing the strengths of the long-range nuclear forces. As a
very recent example, we mention the high-accuracy
calculation of the deuteron charge and quadrupole form
factors [72], where the isospin-breaking corrections con-
sidered in this work have been taken into account and
were found to play an important role for the determination
of the quadrupole moment, for which the value of Qd ¼
0.2854þ0.0038

−0.0017 fm2 was obtained. Redoing the same analy-
sis with the IB corrections from this paper being switched
off, i.e., using the NN interactions from Ref. [17], the
central value of the quadrupole moment would change
significantly to Qd ¼ 0.2803 fm2. These calculations are
currently being extended to other light nuclei, and we
expect the considered IB corrections to be relevant at the
desired accuracy level. It would also be interesting to
explore the implications of our study for the understand-
ing of charge symmetry breaking in binding energy
differences of mirror nuclei [73] and for certain low-
energy three-nucleon scattering observables such as the
doublet scattering length [74] and vector analyzing power
Ay [75]. Furthermore, since our analysis also results in an
accurate determination of the IB short-range operators in
the 1S0 partial wave, it may shed new light on the ongoing
studies of neutrinoless double-beta decay in chiral
EFT; see Ref. [76] for a related discussion. This will
be addressed in a separate publication. Last but not least,
we emphasize that the value for fc can be related to the
pionic hydrogen width Γ1s, whose measurement at
PSI is currently being analyzed; see [77] for a preliminary
result.
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