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We point out a new type of diurnal effect for the cosmic ray boosted dark matter (DM). The DM-nucleon
interactions not only allow the direct detection of DM with nuclear recoils but also allow cosmic rays to
scatter with and boost the nonrelativistic DM to higher energies. If the DM-nuclei scattering cross sections
are sufficiently large, the DM flux is attenuated as it propagates through the Earth, leading to a strong
diurnal modulation. This diurnal modulation provides another prominent signature for the direct detection
of boosted sub-GeV DM, in addition to signals with higher recoil energy.
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Introduction.—Overwhelming evidence from astrophysi-
cal and cosmological observations supports the existence of
dark matter (DM) [1], which is gravitationally interacting but
invisible via electromagnetic interactions. However, the
physical nature of DM is poorly understood: the DM identity
is unknown with a possible mass spans nearly 80 orders of
magnitude [2]. DM direct detection [3] aims to verify the
existence of DM particles and measure their interactions
via the recoil of target nuclei or electrons, which is believed
to be the most direct way to unveil the nature of DM
particles [4,5].
Conventionally, direct detection experiments assume the

existence of nonrelativistic DM confined in the Galaxy. The
gravitational potential of the Galaxy results in an upper
limit on the DM velocity of vχ ≲ 600 km=s above which
DM can escape [6,7]. Because of the energy threshold,
which is typically OðkeVÞ, the sensitive mass window of
direct detection experiments can only extend down to
Oð1Þ GeV via the conventional nuclear recoil channel.
In recent years, to enhance the sensitivity of detecting sub-
GeV DM, many approaches have been explored, including
expanding the nuclear recoil detection capability via a low
threshold bolometer [8,9] as well as via the Bremsstrahlung
[10] and Migdal [11–17] effects, the direct detection of
DM-electron recoils [18–23], and various novel detection
proposals [24–34].

Another interesting possibility has been recently pointed
out: nonrelativistic DM can be boosted by cosmic rays (CRs)
[35,36] or the solar reflection [37–39]. As long as the DM has
finite interactions with matter, it is inevitable for the non-
relativistic DM to be scattered and boosted by the energetic
CRs. Although the flux of the CR-boosted DM (CRDM) is a
tiny fraction compared to the nonrelativistic DM, it allows
explorations of a certain parameter space of sub-GeV DM
that was previously inaccessible [36,40–43] in direct detec-
tion, thus expanding the sensitive mass region. The CRDM
can also produce signals in large neutrino experiments
[44–46].
For sub-GeV DM, the DM-nucleon scattering cross

section with a contact interaction can be quite sizable,
e.g., as large as 10−31 cm2 (see [47] and the references in
[35]), in contrast to the light mediator case [48]. With this
allowed interaction strength, DM particles can experience
multiple scatterings and become attenuated when traveling
through the Earth [49–52]. If the CRDM flux is anisotropic,
a diurnal flux modulation in direct detection experiments is
expected [53,54]. This is different from the conventional
diurnal effect that is mainly for nonrelativistic DM.
Sub-GeV dark matter boosted by cosmic rays.—The

spatial and spectral distributions of the CRDM flux depend
on the DM and CR distributions in the Galaxy as well as the
CRDM scattering processes. Both the DM density and CR
intensities vary with their locations in the Galaxy, becom-
ing more concentrated toward the Galactic Center (GC).
Therefore, CRs are much more likely to scatter with and
boost the DM in the inner Galaxy region. Even for isotropic
scattering, the CRDM flux is highly anisotropic over
the sky.
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Although the CRDM scattering also affects the CRs, the
effect is important only for a very large scattering cross
section (σχp > 10−27 cm2) [35]. For simplicity, we assume
that the CR distribution is unaffected. The CRDM
emissivity, which describes its spatial and spectrum dis-
tributions, is given by [36]

ζχðr; TχÞ ¼
ρχðjrjÞ
mχ

X

i¼p;He

Z
∞

Tmin
i

dTi
nCR;iðr; TiÞ
Tmax
χ ðTiÞ

× viσχiG2
i ðQ2Þ; ð1Þ

where Ti and Tχ are the kinetic energies of the CR species i
and the boosted DM with mass mχ , Tmin

i is the minimum
CR energy required to boost the DM kinetic energy to Tχ ,
and Tmax

χ is the maximum DM kinetic energy given Ti [36].
There are three main ingredients in Eq. (1): the DM density
ρχðjrjÞ at location r, the CR density nCR;i times its velocity
vi, and the scattering cross section σχi. The form factor
GiðQ2Þ≡ 1=ð1þQ2=Λ2

i Þ2 [55] is a function of the
momentum transfer Q with Λp ≈ 770 MeV and ΛHe ≈
410 MeV [56] for proton and helium, respectively.
For the DM density ρχðjrjÞ, we adopt the Navarro-Frenk-

White (NFW) [57] profile, ρnfwχ ðrÞ ¼ ρs=½ðr=rsÞð1þ
r=rsÞ2� with rs ¼ 20 kpc and ρs ¼ 0.35 GeV cm−3, as
the benchmark DM mass distribution. For comparison, a
cored isothermal distribution, ρisoχ ðrÞ ¼ ρs=½1þ ðr=rsÞ2�
with rs ¼ 5 kpc and ρs ¼ 1.56 GeV cm−3, is also studied.
These parameters correspond to a local DM density of
0.4 GeVcm−3 in our Solar System [58] for both profiles.
The difference between the two profiles and more details
are given in the Supplemental Material [59]. The ampli-
tudes of the diurnal modulation vary by only around 7% for
different density profiles.
For the CR contribution in Eq. (1), we employ the

GALPROP [70] code (version 54) to simulate its distribution.
In this Letter, we only consider the dominating proton and
helium species of CRs and leave the rest, in particular
electrons and positrons, for future discussions. For the
detailed CR model parameters and the resulting CR spatial
distribution, please see the Supplemental Material [59].
The DM-nucleus interaction is the least known part in

Eq. (1). For simplicity, we assume that the DM-nucleus
cross section σχA has a coherent enhancement,

σχA ¼ σχpA2

�
mAðmχ þmpÞ
mpðmχ þmAÞ

�
2

; ð2Þ

where σχn ¼ σχp is the constant DM-nucleon cross section,
while mp and mA are the proton and nuclear masses for the
CR. For mχ ≪ mp;mA, the enhancement mainly comes
from the A2 factor. Extra enhancement may come from
ðmχ þmpÞ2=m2

p when mχ goes beyond mp. The dipole
hadronic form factor GiðQ2Þ in Eq. (1) suppresses the
interaction at the large momentum transfer Q.

The CRDM flux arriving at the Earth along a given
direction n̂ is a line-of-sight integral of all contributions
along the way,

dΦ
dTχ

ðn̂; TχÞ ¼
1

4π

Z
ζχðr; TχÞdl: ð3Þ

Figure 1 shows the relative all-sky maps of the CRDM
fluxes in the Galactic coordinate, a spherical coordinate
with the Sun as its center, the latitude measuring the angle
above or below the galactic plane, and the longitude
measuring the azimuth angle from the GC. The peak value
at the GC is set to 1. The top (bottom) panel presents the
NFW (Isothermal) profile. The CRDM fluxes are clearly
anisotropic, with the maximum (the GC direction) and the
minimum differing by about 2 orders of magnitude. To
match the grid resolution of GALPROP, we set the NFW
density within 0.5 kpc of the GC to ρð0.5 kpcÞ. This
approximation has a negligible effect on the diurnal
modulation, as shown in the Supplemental Material [59].
Figure 2 shows the CRDM spectra from the GC direction

for different DM masses. The number density ρχ=mχ in
Eq. (1) accounts for the decrease of CRDM flux for larger
DM masses. On the other hand, on average the maximum
boost occurs when mχ approaches the mass of the incident

FIG. 1. Relative sky maps of CRDM fluxes in the Galactic
coordinates with amplitude in the GC direction set to unity. The
upper and lower panels are for the NFW and Isothermal DM
density profiles, respectively.
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proton or helium, manifesting in the change of spectrum
shape for different energies. At the high energy end, the
spectra are suppressed by the form factor GiðQ2Þ with
Q2 ¼ 2mχTχ . We also show the nonrelativistic DM veloc-
ity distribution predicted by the Standard DM Halo model
(labeled as halo × 10−4) in Fig. 2 for comparison.
We find that the CRDM spectra depend very weakly on

directions, mainly due to the similar CR spectral shapes
throughout the Galaxy. For simplicity, in the following
discussion we will separate the energy and angular dis-
tributions of the CRDM fluxes.
Earth attenuation.—With a large enough scattering cross

section, the DM can frequently scatter with matter when
traveling through the Earth [19,49–52], transferring its
kinetic energy to matter nuclei. Although the decelerated
DM particle may still reach the detector, the DM energy
spectrum is shifted lower, leading to fewer events above the
detector energy threshold. For simplicity, we use the average
nucleon numbers, Ām ¼ 24 in the Earth mantle and Āc ¼ 54
in the Earth core, to approximate the matter compositions
[71]. As a concrete example, for σχp ¼ 10−32 cm2, the mean
free path, Lfree ≡mN=ðρNσχAÞ, is around 2.7 or 17 km in the
Earth core or mantle omitting the form factor effects. Similar
attenuation happens in the atmosphere, but due to the 3
orders of magnitude lower density, the effect is only visible
at much larger cross sections.
The differential CRDM flux dΦðn̂; l; TχÞ=d lnTχ , at the

distance l through the Earth, is a combination of the loss of
DM particles to an energy lower than Tχ and the gain from
a higher energy T 0

χ to Tχ . For an incoming DM particle
with a higher energy T 0

χ, the nuclear recoil energy
Tr is evenly distributed in the range 0 ≤ Tr ≤ T 0

χðT 0
χ þ

2mχÞ=ðT 0
χ þmμÞ≡ Tmax

r ðT 0
χÞ with reduced mass

mμ ≡ ðmN þmχÞ2=2mN . Because of energy conservation,
Tχ is also evenly distributed: T 0

χðmμ−2mχÞ=ðT 0
χþmμÞ≤

Tχ≤T 0
χ . For a given Tχ , the DM particles with energy T 0

χ in
the range Tχ ≤ T 0

χ ≤ mμTχ=ðmμ − 2mχ − TχÞ increases the
flux at Tχ . The CRDM flux evolution contains two
contributions [44]:

∂
∂l
dΦðl;TχÞ
d lnTχ

¼ρNðlÞ
mN

σχN

�
−
dΦðl;TχÞ
d lnTχ

wFFðTχÞ

þ
Z

dΦðl;T 0
χÞ

dlnT 0
χ

TχðT 0
χþmN

μ Þ
T 0
χðT 0

χþ2mχÞ
G2

NðQ2Þd lnT 0
χ

�
:

ð4Þ

The weight factor is defined as
wFF ≡ R

G2
NðQ2ÞdQ2=Q2

max, and the factor Tχ=Tmax
r in

the second term comes from the differential cross section
dσ ¼ σdTr=Tmax

r ¼ σd lnTχðTχ=Tmax
r Þ. The attenuated

DM flux can be obtained by integrating Eq. (4) step by
step over the traversed distance. Figure 3 shows the
attenuated CRDM fluxes with different nadir angles to
the underground detector. To be realistic, we consider a
detector 2 km underground. Then for θnadir ¼ 90°, the DM
needs to travel 160 km before reaching the detector,
corresponding to nine mean free paths in the mantle.
The CRDM flux at medium energy is largely reduced first
and then goes back up at high energy. The limited
attenuation at high energy is due to the highly suppressed
weight factor wFFðTχÞ in Eq. (4). Consequently, the CRDM
is much more energetic than the nonrelativistic DM (see the
inset of Fig. 3) and can produce recoil events with much
higher energy. This makes direct detection experiments
sensitive to sub-GeV DMs.
Boosted diurnal effect.—The two anisotropies from the

Earth and the Galaxy lead to the diurnal effect. First, the
path lengths that DM particles traverse are anisotropic since
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FIG. 2. The CRDM energy spectra at the GC direction for DM
masses 10−4, 10−3, 10−2, 0.1, 1.0, and 10 GeV from top to
bottom. The scattering cross section σχp is assumed to be
10−32 cm2. The inset is the distribution of DM velocities,
β ¼ v=c, compared to the Maxwellian distribution of the Stan-
dard DM Halo. For a clear comparison, we rescale the Standard
DM Halo curve by 10−4 (labeled as halo × 10−4 in the inset) so
that all curves have a similar height.

FIG. 3. The attenuated CRDM spectra for the nadir angles
θnadir ¼ 30° (red), 60° (green), and 90° (blue) with
σχp ¼ 10−32 cm2, mχ ¼ 10 MeV, and the detector at a depth
of 2 km. For comparison, we also show the original standard halo
DM flux distribution in the inset.
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the underground lab is close to the Earth surface and its
depth is typically much smaller than the Earth radius.
Second, the CRDM flux is strongly peaked toward the GC
due to the DM and CR distributions. The CRDM flux is
thus significantly attenuated by the Earth when the GC and
the detector are on opposite sides of the Earth but much less
affected if they are on the same side. To avoid confusion
with the usual diurnal effect for nonrelativistic DM [53,54],
we call this the “boosted diurnal effect.”
Figure 4 shows the diurnal modulation of the CRDM at a

direct detection experiment located at a latitude of 28°N
(approximate location of the China Jinping Underground
Laboratory) and a depth of 2 km underground. Within one
sidereal day, the underground lab rotates around the Earth
axis and its position is parameterized by the sidereal hour in
the range between 0 and 24 hours. We define a survival
probability as the ratio between the attenuated CRDM flux
in the underground lab and the one arriving the Earth. At a
cross section of 1 × 10−32 cm2, we observe significant
“boosted diurnal modulation” with the survival probability
varying in the range of 64%–95%. For comparison, we also
show the curves for a cross section of 3 × 10−32 cm2

where a larger modulation can be observed. Given the
DM energy Tχ, the nuclear recoil has a wide
distribution, 0 ≤ Tr ≤ Tmax

r ðTχÞ, and hence only a fraction,
1 − Tth=Tmax

r ðTχÞ, can pass the detection threshold, leading
to a reduction from the red curve to the blue one in Fig. 4.
Instead of via a numerical integration of Eq. (4), the

curves in Fig. 4 are obtained by Monte Carlo simulations.
Since the spectrum of the CRDM is almost independent of
its direction, it is a good approximation to first sample the
direction of the incoming DM particles according to the sky
map in Fig. 1 and then sample the boosted DM kinetic
energy Tχ according to the spectrum in Fig. 2. The incident

DM particle would then experience multiple scatterings
when crossing the Earth. For each interaction step, we first
sample the distance that the DM particle travels before the
next scattering based on the mean free path and then sample
the reduced kinetic energy. The simulation stops when the
DM particle reaches the underground detector or drops
below the detection threshold.
Imposing the detection threshold on the nuclear recoil

energy Tr ≥ 3 keV for a liquid xenon detector [72] would
reduce the event rate but still keep the modulation
behavior as illustrated in Fig. 4. This is because the
diurnal modulation mainly comes from the high
recoil part, as illustrated in Fig. 3. For two years of data
at a benchmark liquid xenon detector PandaX-4T
(5.6 tons × year exposure) [73], on average 8.1 (55)
events are expected for σχp ¼ 1ð3Þ × 10−32 cm2 and
mχ ¼ 10 MeV, which is quite significant compared to
the background level [74]. For the same detector, the event
rate and hence the sensitivity is roughly independent of
the DM mass for mχ ≲ 0.1 GeV. In addition to a quadratic
scaling with the cross section, one from the CRDM
production and the other from its detection, the
event rate is suppressed once the attenuation from the
Earth becomes dominating for a sufficiently large cross
section (∼10−28 cm2) [36]. The cross section region that
this technique can probe spans roughly 4 orders of
magnitude.
Another factor is the scattering angle, which leads to

deflection [19]. For the relativistic CRDM with typical
1 GeV kinetic energy, mass mχ ¼ 10 MeV, and typical
momentum transfer Q ≈ Λ ≈ 200 MeV [56], the scatter-
ing angle is 3°–5°. Although not completely negligible,
the scattering angle does not affect the diurnal modulation
effect due to the following arguments. For the peak region
of Fig. 4, the DM from the GC only needs to penetrate
Oð1Þ km. With a mean free path of around 17 km, most
CRDMs experience only one scattering at most.
Therefore, the peak region would not be affected signifi-
cantly. Multiple scatterings will further suppress the valley
region of the curve and therefore enhance the modulation
effect.
The recoil energy spectra for incident CRDMs along

different nadir angles in a liquid xenon detector are shown
in Fig. 5. Since the recoil energy can reach Oð1 MeVÞ,
observing a high energy recoil event is a smoking gun for
the CRDM, especially when the detector and the GC are
on the same side of the Earth. However, these energetic
recoils may excite target isotopes and therefore may no
longer be simple nuclear recoils. The signal identification
strategy for such events needs more experimental study.
Statistically, the boosted diurnal modulation can help to
identify such high energy recoil signals and suppress the
background, which is expected to be constant over time. A
more detailed analysis with real data will appear in a
future work.

FIG. 4. The survival probability of CRDM arriving
at an underground lab at latitude 28°N and a depth of 2 km vs
the sidereal hour relative to the number of DM particles
arriving at the Earth for two different cross sections
σχp ¼ 1ð3Þ × 10−32 cm2. The red curves correspond to the total
CRDM arriving at the detector with Tχ ≥ Tmin

χ , and the blue
curves are those above the detector threshold (Tr > 3 keV for a
liquid xenon detector).
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Conclusion.—The CRDM provides a possibility for the
conventional DM direct detection experiments to extend
their sensitive window to the sub-GeV mass range via the
detection of boosted DM events that produce a higher
energy recoil above threshold. If the DM-nucleon cross
section is sufficiently large, the CRDM is significantly
attenuated when traveling through the Earth. Because of the
anisotropies of the CRDM flux and the Earth attenuation,
the event rate and energy spectrum exhibit a characteristic
diurnal modulation, which is a powerful signature to
suppress background and enhance sensitivities to sub-
GeV DM. Future work can use the electron component
in the CR and extend this exploration to DM-electron
interactions. In addition, future directional detection experi-
ments may directly image the anisotropic sky map of the
CRDM. The modulation discussed in this Letter may also
apply to the boosted DM scenario [75–77].
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