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The conformal extension of the BMS; algebra is constructed. Apart from an infinite number of
“superdilatations,” in order to incorporate superspecial conformal transformations, the commutator of the
latter with supertranslations strictly requires the presence of nonlinear terms in the remaining generators. The
algebra appears to be very rigid, in the sense that its central extensions as well as the coefficients of the
nonlinear terms become determined by the central charge of the Virasoro subalgebra. The wedge algebra
corresponds to the conformal group in three spacetime dimensions SO(3,2), so that the full algebra can also
be interpreted as an infinite-dimensional nonlinear extension of the AdS, algebra with nontrivial central
charges. Moreover, since the Lorentz subalgebra [s/(2, R)] is nonprincipally embedded within the conformal
(wedge) algebra, according to the conformal weight of the generators, the conformal extension of BMS; can
be further regarded as a W, 1y algebra. An explicit canonical realization of the conformal extension of
BMS; is then shown to emerge from the asymptotic structure of conformal gravity in three dimensions,
endowed with a new set of boundary conditions. The supersymmetric extension is also briefly addressed.
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Introduction.—The symmetries of special relativity are
embodied through the Poincaré algebra. Thus, extensions
thereof turn out to play a relevant role in theoretical
physics. Indeed, for relativistic systems with scale invari-
ance, the algebra is generically enhanced to that of the
conformal group, including special conformal transforma-
tions; see e.g., Refs. [1,2]. Conformal field theories,
formulated in terms of these enhanced symmetries, have
spanned a wealth of impressive results in a wide variety of
contexts [3—7]. Besides, extensions of the Poincaré algebra
that contain additional fermionic generators of spin 1/2,
known as super-Poincaré algebras, provide the building
blocks for most of the supersymmetric field theories,
enjoying a prominent and complementary source of excit-
ing developments [8—14]. Another very interesting exten-
sion of the Poincaré algebra, known as the BMS algebra,
emerged from the structure of asymptotically flat space-
times at null infinity [15,16], in which translations are
enhanced to an infinite-dimensional ideal of “super-
translations.” The BMS algebra can be further extended
to admit “‘superrotations” [17-21] and it has recently
attracted a great deal of attention due to its fascinating
connections with soft theorems [22-24], the memory effect
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[25], and the information paradox [26,27]. More recently,
the robustness of the BMS algebra shows itself through its
canonical realization either at null [28] or spatial infinity
[29-31], and also near generic horizons [32].

It is then natural to wonder about the possible compat-
ibility of these three time-honored, but wildly different
extensions of the Poincaré algebra.

Conformal and supersymmetric extensions of the
Poincaré algebra turn out to be perfectly compatible
through the well-known superconformal algebra [8,33].
Nevertheless, the supersymmetric extension of the BMS
algebra remains intriguing. Indeed, among the infinite
number of supertranslations, only the subset of standard
translations possesses a fermionic “square root” being
spanned by four fermionic generators, at null [34] or
spatial infinity [35]. Inequivalent extensions with an infinite
number of fermionic generators have been proposed in
Refs. [34,36,37], and it is still unclear whether they could
be canonically realized even at the linearized level [38].

On the other hand, a conformal extension of BMS has
been recently constructed in Ref. [39], which successfully
accommodates “superdilatations.” However, its structure is
very different from that of the conformal group since
standard special conformal transformations are not
included. Thus, the BMS algebra seems to resist compat-
ibility with the full conformal extension.

In the case of three-dimensional spacetimes, the con-
formal, supersymmetric,c and BMS extensions of the
Poincaré algebra are also well known. The compatibility
of conformal and minimal supersymmetric extensions is also
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firmly established by the superconformal algebra osp(1]4)
[40]. Interestingly, in contradistinction to the four-dimen-
sional case, the BMS; algebra [41,42] is known to admit a
fully fledged supersymmetric extension, in the sense that
supertranslations possess suitable fermionic square roots,
spanned by an infinite number of fermionic canonical
generators [43]. However, as in four dimensions, a full
conformal extension of BMS; has not been hitherto reported.
In fact, as it has been recently pointed out from entirely
different approaches in Refs, [44—46] the BMS; algebra can
be suitably enlarged by superdilatations, but nonetheless,
some difficulties in the closure of the algebra seem to
preclude the inclusion of special conformal transformations.

The conformal BMS; algebra.—Here we show that the
conformal extension of the BMS; algebra that incorporates
superspecial conformal transformations is a nonlinear
algebra. In particular, the commutator of supertranslations
with special conformal transformations strictly requires the
presence of nonlinear terms in the remaining generators,
which become well defined provided that the BMS;-Weyl
subalgebra is endowed with nonvanishing central exten-
sions. This can be seen as follows.

It is simple to verify that the BMS; algebra, spanned by
superrotations 7, and supertranslations P,,, once enlarged
by superdilatations D,,, admits only two nontrivial central
charges. The centrally extended BMS;-Weyl algebra then
reads

i{‘jm7 jn} = (m - n)jm+n + C(m2 - 1)m5m+n.0’

i{jrm Pn} = (m - n)Pm+n’

i{jm’ Dn} =—nD, 1y,

i{Pn.D,} = —=iPin,

i{Dm’ Dn} = CMByyyn0s (1)
where m, n € Z. Vanishing commutators are omitted here
and in the following. Note that in the presence of super-
dilatations, the Jacobi identity excludes the possibility of a
nontrivial central charge in the commutator of 7,, and P,.

The generators of superspecial conformal transformations
IC,, can then be incorporated provided that the superdilata-

tions “level” ¢ coincides with the central charge of the
Virasoro subalgebra (¢ = c¢ #0), so that the remaining
commutators of the full conformal BMS; algebra are given by

l{jmJCn} = (m - n)Kerm

i{lcm’pn} = iKm+m

H{Po K} = =20m = n)T i+ (m = )AL,
—2i(m* —mn+n*-1)D,, .,
+ AL = 2e(m? = 1)mé,, 0, 2)

where A,(,i> stands for nonlinear terms defined through

2 _4
Am = Dm—n Dn ’ 3
D3 )

3 4 4i
Ay’ = _?;jm—nDn + ?;Dm—n—lpnpl’ (4)

with (anomalous) conformal weight s. Indeed, with respect to the
Virasoro subalgebra, the conformal weight of 7,,, P,
and [C,, isgivenby s = 2, while D,, has conformal weights = 1.

It is worth highlighting that the central extensions as well
as the coefficients in front of the nonlinear terms of the
conformal BMS; algebra turn out to be entirely determined
by the central charge c of the Virasoro subalgebra, and in
this sense, the algebra is very rigid. Indeed, the Jacobi
identity imposes very stringent conditions suggesting that
the nonlinear conformal extension of BMS; is unique.

The wedge algebra reduces to that of the conformal
group SO(3,2). It is recovered by restricting the integers
that label the generators according to their conformal
weight s as |m| < s, dropping nonlinear terms [see
Eqgs. (A12) and (A13)].

Remarkably, the conformal BMS; algebra can then also
be interpreted as an infinite-dimensional nonlinear exten-
sion of the AdS, algebra with nontrivial central charges. In
this way, the classical theorem of algebraic cohomology
that precludes nontrivial central extensions for semisimple
algebras (see, e.g., Ref. [47]) clearly does not apply in this
case due to the nonlinearity of the extended algebra.

Furthermore, as the Lorentz subalgebra [s/(2,R)],
spanned by [J,, with m = —1, 0, 1, is nonprincipally
embedded within the wedge algebra [so(3,2)] [48], taking
into account the conformal weight of the generators, the
conformal extension of BMS; can also be regarded as a
W21 algebra (see, e.g., Refs. [49,50]) [51].

It is also worth pointing out that, as it occurs for classical W
algebras, the conformal BMS; algebra is well defined provided
that the Virasoro central charge does not vanish; since other-
wise, the coefficients that give support to the nonlinear terms
would blow up. Nevertheless, this is not necessarily the case for
the quantum algebra because these coefficients as well as the
central extensions generically acquire corrections.

An explicit canonical realization of the conformal BMS;
algebra is performed in the next section, while the super-
conformal extension of BMS; is briefly addressed in the
final section.

Explicit realization: asymptotic structure of conformal
gravity in 3D.—The aforementioned link between the
conformal BMS3 and W, , 1) algebras naturally suggests
an explicit realization in terms of a WZW model for
SO(3,2) [50], so that the conformal BMS; algebra could
be obtained from the Kac-Moody extension of so(3,2) by
virtue of a Sugawara-like construction [52]. The
Kac-Moody currents could also be endowed with suitable
constraints so that the conformal BMS; algebra emerges
from the Dirac brackets. Equivalently, the latter option can
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be holographically realized along the lines of Ref. [53], so
that the constraints turn out to be automatically imple-
mented through an appropriate choice of boundary con-
ditions for a Chern-Simons theory of SO(3,2). This is
explicitly performed in what follows.

As shown in Ref. [54], a Chern-Simons theory for
SO(3,2), described by

Ics[A] = %/ <AdA + §A3>, (5)

where the bracket (- - -) stands for the invariant bilinear form
in Eq. (A8), turns out to be related to conformal gravity in
three dimensions [55,56], which admits an interesting class
of black hole solutions [57] (see also Ref. [58]).
Some choices of asymptotic conditions for conformal
gravity in three dimensions have already been explored in
Refs. [59-61], being such that the asymptotic symmetry
algebra is given by the direct sum of a U(1) current with
either BMS; or two copies of the Virasoro algebra.
Nevertheless, these choices do not accommodate the black
holes in Ref. [57]. Thus, in what follows we propose a new
set of boundary conditions that allows one to include them,
and also provides a canonical realization of the conformal
BMS; algebra that emerges from the asymptotic symmetries.

Following Ref. [53], the radial dependence of the
asymptotic form of the gauge field can be completely
gauged away by virtue of a gauge choice of the form
A = h7'ah + h~'dh, with h = h(r), so that the compo-
nents of the auxiliary connection a = a,dt + a,d¢ depend
only on time and the angular coordinate.

It is useful to express the generators of SO(3,2) in a basis
that matches that of the wedge algebra described in the
previous section, being precisely defined in Eq. (A12).
Thus, the asymptotic behavior that we propose for a,, can
be readily written in terms of deviations with respect to a
reference configuration that go along highest weight gen-
erators [62]; i.e.,
|

7). 7))

{T(#).Ple)} = -2P(#)5' (b — ) — (¢ — 9)P'().
{T(@®).Klg)} = 2K(@)3 (¢ = 0) = 50 = )K" ().
{T(#).Dlg)} = D)3 (¢~ ).

{P($).D(0)} = ~P($)o(¢ ~ 0).

{K(¢). D(0)} = K(@)3( = ).

{D(). D)} = =58 - ),

T T T
Cl(p :Jl - — <j——D2>J_1 —ﬁPP_l

k k
T Kk, +2ZDD (6)
2k T T

where the dynamical fields 7, P, K, D are c-number
functions that depend on 7, ¢. This falloff is maintained
under gauge transformations éa = dQ + [a, Q], where Q =
Qle . ep, €x, €p] depends on four arbitrary functions of 7, ¢
[ex = ex(t,)]. The explicit form of Q as well as
the transformation law of the dynamical fields are
given in Egs. (Al4) and (A16), respectively. According
to Refs. [63,64], the asymptotic symmetries are preserved
by the evolution in time by choosing the asymptotic form of
a, to be generically given by

a, = Q. pp. i, fip). (7)

where the “chemical potentials” uy = py(f,) are
assumed to be fixed at the boundary. The falloff of a; is
then maintained by the asymptotic symmetries provided
that the field equations hold in the asymptotic region, and
the parameters e fulfill suitable differential equations of
first order in time [see Eq. (A17)].

The asymptotic symmetry generators can then be
obtained from different approaches [65,66], and read

Qles.ep.€x., ep] = —/ (e7T + €epP + exK + epD)dg.

(8)

The algebra of the conserved charges (8) can then be
obtained from their Dirac brackets, or more directly from
the transformation law of the fields in Eq. (A16) by virtue of
{QIm]. Qml} = =6, Qlmy]. It is explicitly given by

+ A3 ()5(¢ — ¢) +6[D($)5 (¢ — ). ©)
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so that once expanded in Fourier modes,

= (1/2x) > ,, X;ne™?, it reduces to that in Egs. (1)
and (2), with ¢ = ¢ = k, provided that the zero mode of 7,
is shifted as Ty — J, — (k/4n).

It is worth highlighting that the central extensions of the
conformal BMS; algebra, in this context are determined by
the Chern-Simons level k. This goes hand in hand with the
fact that the conformal group SO(3,2) is semisimple, and
hence, it admits a unique invariant bilinear form being
given by the Cartan-Killing metric [up to a normalization
that can fixed as in Eq. (A8)].

As pointed out at the beginning of this section, the
conformal BMS; algebra can also be directly reproduced
from the WZW model for SO(3,2) that is obtained once
the solution of the constraints with our gauge choice
(ap = g"8¢g) is substituted back into the Chern-Simons
action (5), endowed with the boundary terms that yield the
conserved charges in Eq. (8). The corresponding
currents that fulfill the Kac-Moody extension of the so
(3,2) algebra can then be supplemented with second
class constraints, being precisely implemented through
requiring that ¢~'d,g is given by Eq. (6), so that
the algebra in Eq. (9) is recovered from the Dirac
brackets.

A remarkable fact of the asymptotic behavior
described above is that, since it accommodates the black
holes in Ref. [57], it includes asymptotically (A)dS or
flat three-dimensional spacetimes. Indeed, the precise
value of the “cosmological constant” can be seen to be
fixed by a suitable quotient of the chemical potentials.
The structure of the generic form of the black holes
that fit within our asymptotic conditions turns out
to be very rich and intricate, and it can be carefully
analyzed in terms of the conserved charges that span the
conformal BMS; algebra. This is left for a forthcom-
ing work.

The superconformal BMS; algebra.—The conformal,
supersymmetric, and BMS extensions of the Poincaré
algebra in three dimensions can be shown to be fully
compatible. Indeed, the fermionic generators of the
superconformal algebra osp(1|4), associated to the
square roots of translations (Q) and special conformal

transformations (S), admit infinite-dimensional exten-

sions that we denote by 1//,[41+ Vand 1//,[; ], corresponding to

the square roots of supertranslations and superspecial
conformal transformations, respectively.
The superconformal BMS; algebra is then spanned by

the set (T us P> Ds Kons I//L,J[], Win ) so that the com-
mutators of the BMS;-Weyl subalgebra (7 ,,, P, D,,) are
given by Eq. (1) with ¢ = ¢; while the commutators of the
generators of superspecial conformal transformations (K,,)
with the remaining bosonic generators read as in Eq. (2),
where the nonlinear term of conformal weight 3 in Eq. (4)
acquires a quadratic shift in the fermionic generators,
according to

2i
A = AR 2D (10)
n
The (anti-)commutators that involve fermionic generators

read as
(+]
A Yinins

Z{Dln’ W” } + 2 WLﬂ—n’

HT k) = (@—

P =25 =0 Julidy 4 S
i{’Cm’ l//’[lH} =-2 <% )WLt—]}—n - AL:-]&-(i/Z)’

I{WLT]’VAJL]} = Pern’
l{l//m 71//11 } = _ICm+n’

l{l//m s l//n } jm—HL - l(m - H)Dm+n

I 1
=g M+ 2¢ <m2 - Z) Sinos (1)

where ALn 16572) +(2i/¢)>., Dy ,1z//£,i], and the brackets

between fermlomc generators are symmetric. The fer-
mionic generators are labeled by integers or half-integers
for fermionic parameters with periodic or antiperiodic
boundary conditions, respectively.

Note that the conformal weight of the fermionic gen-
erators l//£,1i Vis given by s = 3/2. For antiperiodic boundary
conditions, the wedge algebra reduces to osp(1|4), being
recovered once nonlinear terms are dropped and the labels
of the generators are restricted according to |m| < s, where
s 1is their conformal weight. Therefore, the conformal
weight of the generators of the superconformal BMS;
algebra, naturally suggests that it could be regarded as a
W(22232.1) algebra.

As in the bosonic case, the superalgebra also appears to
be very rigid, in the sense that the coefficients that
characterize the nonlinear terms and all of the central
extensions become completely determined by the central
charge of the Virasoro subalgebra.

It is also worth pointing out that the superconformal
extension of the BMS; algebra can be interpreted as an
infinite-dimensional centrally extended nonlinear extension
of the super AdS, algebra [osp(1|4)], suggesting the
possibility of a different version of the AdS,/CFT;
correspondence [67], presumably topological and with
enhanced symmetries.

A canonical realization of the superconformal BMS;
algebra can also be seen to arise from the asymptotic
structure of conformal supergravity in three dimensions
[68,69], by virtue of a suitable supersymmetric extension of
the new boundary conditions described by Eqgs. (6) and (7)
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(work in progress). Our results could also be regarded as a
(super)conformal completion of flat-space chiral (super)
gravity [70,71].

As a final remark, it might be interesting to explore whether
the super BMS; algebras with N > 1 in Refs. [72-78],
as well as the bosonic and fermionic higher spin extensions of
BMS; in Refs. [79-82] and [83,84], respectively, could also
be compatible with the conformal extension developed here.
The compatibility with other possible extensions of BMS; as
in, e.g., Refs. [85,86] also deserves attention.
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Appendix: Remarks on so(3,2) and the conformal BMS5
algebra.—The s0(3,2) algebra, spanned by generators
J 45, which reads
Jag-Jcp) =nacdsp —necdap +1apdcs —nppJca.  (Al)
is well known to be isomorphic to the conformal algebra in
three dimensions. Indeed, choosing 7,z=diag(—1,1,1,1,—1)
and splitting the index A according to A = {a,3,4}, the
following change of basis

1

Jazzeabcjbc7 Py =Joz = J s, (A2)
K, =Juiz+ Jass D = Jy, (A3)
makes the algebra in Eq. (A1) to read as
Vardpl = €t [Pardp] = €apcPC. (A4)
(Ko Jb] = €apcKS, [Po, Dl =Py, (AS)
(Ko Dl ==Ka,  [PoKp] = =200 +2naD. (A6)

Therefore, if the Cartan-Killing metric is normalized
according to

<JAB,JCD> - _512‘11)’)’ (A7)

in the “conformal basis” the nonvanishing components of
the invariant bilinear metric are given by

<Ja"]b>:'7ab; <Pa’Kb>:_277ab; <D’D>:1 (AS)
Besides, so(3,2) also corresponds to the wedge algebra of
the conformal extension of BMS;. In order to see that
explicitly, it is useful to choose the Minkowski metric #,;, in
light-cone coordinates, so that its nonvanishing components
read 179; = 1750 = 2o = 1, and an orientation for which the
Levi-Civita symbol fulfills €y, = 1. The suitable change of
basis can then be defined as

1

J()—)—EJ_I; Jz—).]o, (Ag)
1

P0—>—§P_1; PZ—)Po, (AIO)
1

KO g —EK_l; K2 i Ko, (All)

and hence, the so(3,2) algebra in the new basis spanned by
s Py Koy, D), with m,n = —1, 0, 1, reduces to

Vs Il = (m =),
s Pu] = (m = )Py,
i Kn] = (m = 1)Ky,
[P, D] = Py,
K., D] = -K,,

]

=) ypin —2(m* —mn +n> - 1)D,
(A12)

which agrees with the wedge algebra of the conformal
BMS; algebra provided that i{, } — [,], and

In the basis (A12), the so(3,2)-valued parameter €2 that
preserves the asymptotic form of the gauge field a, in

Eqg. (6) is given by

2n
Q[GJ,Ep,G}C,é'D] :€j11 _GICPI _GPKI + <€D +7D€j)D
+1leg.ep.ex.en, (Al4)

with
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27 2r /4 /4 k
11[6‘7,673,6;@,6@} = —617.,0 + <€;C _TDGIC)PO + <€;; —7’19673)[(0 - % [(j_%D2>€J+IC€}C + Pep —%6‘{/7] J_]

3 1 k 3
+% |:<j—7ﬂ’D2 +D/>€K —|—2'D€;C—§P€j —ZG;/C]P_I +% [(j—%'Dz _'D/>€73—2D€[P

1 k
—EKé‘j—ES;/;]K_I, (AIS)
so that the transformation law of the dynamical fields reads

éj:2]6{7+j'ej—%ei7”+2pe%+P’€p+21C€§C—l—lC’e,C + Dely,

573:277€f7+77’€j—4(‘_7—47”172)%—2<j—4%D2>/€K+§€%—2{D”—4% <‘_7—27ﬂD2>D:|€;C
—6(Dej)' + Pep,

5IC—2/Cef7+K’€J—4(j—47ﬂp2)eg,—2<j—4%1)2>/e73+7—]i€$

4 2
2 [D” - 7” (j - 7”1)2) D} ep + 6(De}y) — Kep.

k
0D =De'; + Dey — Pep + Kex + 2—€’D. (Al6)
n

As pointed out in Ref. [63], the asymptotic form of the field equations can be obtained from the fact that the evolution in
time corresponds to a gauge transformation spanned by Q = Qu 7, pip. pixc, pip), Where p stands for the chemical potentials.
Finally, in order to maintain the falloff of a,, the parameters ¢, have to fulfill the following differential equations

. 4 47
by =pge;—egpus +2 (673/4;( — U€p — kDMIC€7>> +2 <€/c/l§> — Up€jc + kD#P€K> ,

ép = upe'y — egpp — [(up + 7 )ep — pgep| + ppep,

€x = px€'y — eghic + [(Hp — Hy)ex + pgex] — uxep,

. 8 4r 61

ép = —€pp —2 </‘;C - 7Dﬂ}g> €p + 2urcep +2 [ﬂ;/c - <j/t;< + 2Duj — TDZM}C>:| €p
6

4z V3 87
Hp — - (Jup — 2Dup — 77?2#@)] €x +2 (M%» + —Dm:> € — 2upex. + prep. (A17)
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