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We present the first study on the amplification of magnetic fields by the turbulent dynamo in the highly
subsonic regime, with Mach numbers ranging from 10−3 to 0.4. We find that for the lower Mach numbers
the saturation efficiency of the dynamo ðEmag=EkinÞsat increases as the Mach number decreases. Even in the

case when injection of energy is purely through longitudinal forcing modes, ðEmag=EkinÞsat ≳ 10−2 at a

Mach number of 10−3. We apply our results to magnetic field amplification in the early Universe and
predict that a turbulent dynamo can amplify primordial magnetic fields to ≳10−16 G on scales up to 0.1 pc
and ≳10−13 G on scales up to 100 pc. This produces fields compatible with lower limits of the intergalactic
magnetic field inferred from blazar γ-ray observations.
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Introduction.—Magnetic fields are ubiquitous on all
scales in the Universe, from the surface of stars to galaxies
to the voids in the large-scale structure of the Universe. The
turbulent small-scale dynamo (SSD) amplifies small seed
magnetic fields, by converting turbulent kinetic energy into
magnetic energy [1,2]. The turbulent dynamo has a wide
range of applications, as it can operate in a variety of
astrophysical situations and has been studied in the
supersonic and transonic regime of turbulence [3,4]; how-
ever, it remains unexplored in the extremely subsonic
regime. This regime is important for studies on magneto-
hydrodynamic turbulence and is relevant for many proc-
esses in astrophysics and cosmology, including the
amplification of primordial magnetic fields (PMFs).
Several studies have inferred the presence of intergalactic

magnetic fields (IGMFs) through γ-ray observations of TeV
blazars and have predicted a lower limit of 10−16–10−18 G
for the IGMF on megaparsec scales [5–12]. The inferred
lower bounds havebeenquestioneddue to the possible effect
of plasma instabilities in the intergalactic medium [13].
However, recent studies have taken into account the effect of
plasma instabilities in the observations and have shown that
a lower limit on the IGMF can be placed from the blazar
γ-ray observations [14,15].
Understanding the origin of these magnetic fields is an

unsolved problem. Magnetic fields can be generated during
various phases in the early Universe [16]. Sigl et al. [17]
predict the generation of magnetic fields ∼10−29 G at the
electroweak phase transition and field strengths of∼10−20 G
at theQCDphase transition. Turner andWidrow [18] predict

magnetic fields with strengths∼10−34–10−10 Gon a scale of
1 Mpc may be produced during inflation. Otherwise,
the unavoidable presence of vorticity in the primordial
plasma leads to the generation of weak magnetic fields in
the radiation era [19,20]. Studies by [21,22] investigate
the properties of hydrodynamic turbulence in the primordial
plasma at the QCD phase transition. Upper limits of
∼10−9 G [16,23–31] and recent stricter limits of ∼5 ×
10−11 G [32] have been placed on PMFs from cosmic
microwave background anisotropies.
The observed magnetic fields, in many cases, are orders

of magnitude greater than the initially generated fields. To
explain the magnitude of the observed strong magnetic
fields in the voids of the Universe, Wagstaff et al. [33]
showed that the SSD can amplify the magnetic field seeds
present in the early Universe. Turbulence in the early
Universe is unavoidably generated by gravitational accel-
eration due to the primordial density perturbations (PDPs),
which gives rise to longitudinal (irrotational) driving
modes. From Wagstaff et al. [33], we expect the turbulent
dynamo in the early Universe to have operated under very
subsonic conditions with Mach numbers (M) ∼10−5–10−4.
Motivated by these predictions, we study the behavior

of the SSD in the very subsonic regime with a purely
compressive driving of the turbulence. Furthermore, it has
been shown that the SSD operating during the collapse of
gas clouds in minihalos can give rise to rather strong
magnetic fields during the formation of the first stars
[34,35]. Xu and Lazarian [36] present a consolidated study
on the kinematic and the nonlinear growth phases of the

PHYSICAL REVIEW LETTERS 126, 091103 (2021)

0031-9007=21=126(9)=091103(6) 091103-1 © 2021 American Physical Society

https://orcid.org/0000-0002-0706-2306
https://orcid.org/0000-0002-4840-8203
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.091103&domain=pdf&date_stamp=2021-03-03
https://doi.org/10.1103/PhysRevLett.126.091103
https://doi.org/10.1103/PhysRevLett.126.091103
https://doi.org/10.1103/PhysRevLett.126.091103
https://doi.org/10.1103/PhysRevLett.126.091103


SSD. The authors discuss the dynamo mechanism during
primordial star formation and in the first galaxies and find
that, during early star formation, magnetic fields on the
Jeans scale cannot be easily generated [36]. Thus, Xu and
Lazarian [36] show that more work is needed to understand
the initial generation of magnetic fields in the early
Universe, which may play an important role during early
star formation. Recent studies [37,38] have also investi-
gated the role of magnetic fields in the formation of the
first stars.
A previous study by Federrath et al. [3] has examined

the properties of the dynamo as a function of the Mach
number and the nature of turbulent driving. They inves-
tigated the case when the turbulent dynamo is driven solely
by longitudinal modes for Mach numbers in the range
M ∼ 0.1–20, thus not reaching sufficiently far into the very
subsonic regime relevant for the amplification of PMFs. In
this Letter, we determine the properties of the SSD with
nonhelical magnetic fields in the very subsonic regime for
Mach numbers in the range M ¼ 10−3–0.4 and for a wide
range of turbulent driving conditions.
Simulation methods.—We solve the following compress-

ible, three-dimensional, ideal magnetohydrodynamical
(MHD) equations with the FLASH code on a periodic
computational grid [39–41]

∂ρ
∂t þ∇ · ðρv⃗Þ ¼ 0 ð1Þ

∂ðρv⃗Þ
∂t þ∇ · ðρv⃗ ⊗ v⃗ − B⃗ ⊗ B⃗Þ þ∇p ¼ ∇ · ð2νρSÞ þ ρf⃗

ð2Þ

∂B⃗
∂t ¼ ∇ × ðv⃗ × B⃗Þ þ η∇2B⃗; ð3Þ

closed by the isothermal equation of state pthermal ¼ c2sρ,
with constant sound speed cs and satisfying ∇ · B⃗ ¼ 0. In
the above equations, ρ, v⃗, and B⃗ are the density, velocity,
and the magnetic field. ν and η are the kinematic viscosity
and the magnetic resistivity. p is the sum of the thermal and
magnetic pressure of the system p ¼ pthermal þ ð1=2ÞjB⃗j2.
S is the traceless rate of strain tensor Sij ¼
ð1=2Þð∂ivj þ ∂jviÞ − ð1=3Þδij∇ · v⃗, which captures the

viscous interactions and f⃗ is the turbulent acceleration
field used to drive the turbulence.
The acceleration field f⃗, is modeled using the Ornstein-

Uhlenbeck process in Fourier space [42]. In our simula-
tions, we stir the turbulence continuously on large scales,
i.e., wave numbers kð2π=LÞ ¼ ½1;…; 3�, where L is the
side length of the cubic Cartesian computational domain, as
in previous studies [3,42]. The forcing is modeled by a
projection operator in Fourier space, which is defined as

Pζ
ijðk⃗Þ ¼ ζP⊥

ijðk⃗Þ þ ð1 − ζÞPk
ijðk⃗Þ, where Pk

ij ¼ kikj=k2 is

the curl-free (compressive) projection and P⊥
ij ¼

δij − kikj=k2 is the divergence-free (solenoidal) projection.
The parameter ζ defines the nature of the projection and lies
in the range [0,1]. ζ ¼ 0 corresponds to injection of purely
compressive (or longitudinal) modes in the velocity field
and ζ ¼ 1 implies injection of purely solenoidal (or rota-
tional) modes. The purely compressive forcing models the
turbulent acceleration field f⃗, such that ∇ × f⃗ ¼ 0 and the
purely solenoidal forcing has ∇ · f⃗ ¼ 0 [42]. The ampli-
tude of the turbulent driving controls the amount of kinetic
energy injected into the plasma and therefore the Mach
number M ¼ v=cs.
We perform a systematic study wherein we vary the

Mach number and the nature of the turbulent driving to
determine their effects on the properties of the SSD. We run
our simulations on uniform grids with 1283 cells and set up
a turbulent initial seed field with an initial plasma beta
βi ∼ 1010–1014. In addition to the above-mentioned ideal
MHD simulations, we solve the nonideal MHD equations
on 2563 grid cells to estimate the effective Reynolds
number (Re) and magnetic Prandtl number (Pm) of the
ideal MHD simulations (see Fig. 2). In agreement with
earlier work [3], we find that Re ∼ 1500 and Pm ∼ 2 are
good approximations for the effective Reynolds and mag-
netic Prandtl number in the ideal MHD simulations with
1283 grid cells. While in the early Universe, we expect
much higher Re and Pm numbers [43], the saturation level
of the dynamo, which is our main concern, is converged to
within a factor of 2 compared to the limit of very high Re
and Pm numbers [4].
The stretch-twist-fold dynamo mechanism results in

an exponential amplification of the magnetic energy
Em=Em0 ¼ expðΓtÞ where Γ is the amplification rate,
Em0 is the initial magnetic energy and t is the time,
normalized to the eddy-turnover time ted, which is defined
as ted ¼ L=ð2McsÞ [1,2]. The saturation efficiency of the
dynamo, defined as the ratio of the magnetic energy to
kinetic energy at saturation [ðEmag=EkinÞsat], is a function of
the Mach number and the nature of turbulent driving [3].
Results.—We assign a model name to all our simulations.

In the model name “M” stands for the Mach number and
“S” stands for the solenoidal fraction (ζ) in the driving
field. For example, the model “M0.001S0.1” represents the
simulation with M ∼ 10−3 and a solenoidal fraction of 0.1
in the turbulent driving. We study the properties of the
SSD in the subsonic regime M ∼ 10−3 − 0.4. A dynamo
driven by solenoidal forcing shows a higher amplification
rate and saturation efficiency, because in this case, the
driving field injects vorticity directly into the plasma,
which is then able to drive the stretch-twist-fold dynamo
mechanism efficiently [3]. However, with compressive
forcing, solenoidal modes are not injected directly by
the turbulent driving and the plasma might have zero initial
vorticity.
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Before we present and discuss our numerical results, we
briefly address the basic equation for the evolution of
vorticity. Vorticity, defined as ω⃗ ¼ ∇ × v⃗, follows the
evolution equation [44]

∂ω⃗
∂t ¼ ∇ × ðv⃗ × ω⃗Þ þ ν∇2ω⃗þ 1

ρ2
∇ρ ×∇p

þ 2ν∇ × S∇ ln ρ: ð4Þ

The vorticity equation has the same structure as the
induction equation (3) and can therefore give rise to an
exponential growth of vorticity similar to the amplification
of magnetic fields by the SSD, if the last three terms on the
right-hand side of Eq. (4) are subdominant compared to the
first term [45]. Considering we start with zero initial
vorticity, the baroclinic term ð∇ρ ×∇pÞ=ρ2 cannot gen-
erate any vorticity, as the system is isothermal with the
equation of state p ¼ c2sρ. However, if density gradients are
present, then through viscous interactions, the last term on
the right-hand side of Eq. (4) can generate vorticity, which
can then be amplified through the first term on the right-
hand side of Eq. (4).
Figure 1 depicts the time evolution of the Mach number,

Em=Em0, and Emag=Ekin as a function of time for a
representative sample of our simulations (a full list of
simulations is provided in the Supplemental Material,
Sec. A [46]). We find that increasing the solenoidal fraction
(ζ) of forcing enhances the amplification rate of the
dynamo and increases the saturation level.
The saturation efficiency of the SSD and the solenoidal

fraction of the kinetic energy Esol=Etot as a function of the
Mach number and the turbulent driving, are shown in
Fig. 2. The solenoidal fraction of the kinetic energy is
correlated to the amplification rate Γ. The greater the
solenoidal modes in the velocity field, the higher the
vorticity of the plasma, which leads to a more efficient
amplification of the magnetic energy and therefore a higher
amplification rate. We find that for purely compressive
driving, the amplification rate and the saturation efficiency
decline with the Mach number until M ∼ 0.05. Below this
Mach number, it is easier for the energy injected by the
turbulence to drive rotational modes, thus generating
relatively more vorticity in the plasma and increasing
Esol=Etot. The dynamo is very sensitive to the solenoidal
fraction of the kinetic energy and, as Esol=Etot increases, the
amplification rate and the saturation efficiency of the
dynamo increase. In the very subsonic regime, both
Esol=Etot and ðEmag=EkinÞsat increase as the Mach number
decreases.
With a solenoidal fraction of 0.1 in the driving, we find

that the saturation efficiency approaches the results from
Federrath et al. [3] for purely solenoidal driving. This is
also observed for the dynamo with solenoidal fractions of
0.01 and 0.001 in the forcing. With a solenoidal fraction of
0.0001, we find that at M ∼ 10−3, the saturation efficiency

increases by an order of magnitude compared to the
dynamo driven by purely compressive driving (ζ ¼ 0).
We also perform the low Mach number simulations with
solenoidal fractions of 0.001 and 0.01 on 2563, 5123, and
5763 grid cells and show that the value of the saturation
efficiency converges with resolution.
The density fluctuations in the plasma decrease with the

Mach number, leading to a decrease in the density
gradients. This, in turn, enables the first term on the
right-hand side of Eq. (4) to operate more efficiently and
to generate a higher fraction of vorticity modes in the very
low Mach number limit. Consequently, the kinetic energy
in the rotational (∇ × v⃗) modes increases relative to the
kinetic energy in the compressive (∇ · v⃗) velocity modes in
the very subsonic regime. This causes Esol=Etot to increase
in this limit, which then leads to an efficient SSD
mechanism, thereby increasing the saturation efficiency
at very low Mach numbers.
Applications.—Magnetic fields are unavoidably created

in the primordial Universe [19] and can act as a seed for the
SSD. Wagstaff et al. [33] show that turbulence can be
established in the early Universe between the electroweak

FIG. 1. Mach number (top), magnetic energyEm=Em0 (middle),
and saturation level Emag=Ekin (bottom) as a function of time
normalized to the eddy-turnover time (ted) for a representative
sample of our low Mach number simulation models on 1283

grid cells with solenoidal fraction of 0.1, 0.001, and 0 (purely
compressive) in the forcing. In the model name, M stands for the
Mach number and S stands for the solenoidal fraction (ζ) in the
driving field. The dotted lines in the middle panel show the fits for
the amplification rate. The dotted black lines in the bottom panel
show the fits for the saturation efficiency.
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epoch and neutrino decoupling (T ¼ 0.2–100 GeV), where
the dissipation scale is set by neutrino damping and is ∼3 ×
10−12 pc in comoving coordinates at the electroweak
epoch. They further describe two mechanisms for driving
the turbulence in this early evolution of the Universe:
(1) through velocity fluctuations generated by the PDPs
and (2) through first-order phase transitions that may occur
in this epoch. In the former case, the velocity fluctuations
arise due to acceleration by the gravitational potential
generated due to PDPs and therefore are longitudinal or
compressive velocity modes. They would also be driven
continuously as is the case in our simulations.
Well-developed turbulence together with the high mag-

netic Reynolds and Prandtl numbers in the early Universe
provides optimal conditions for the SSD to operate.

This dynamo is expected to have operated in very subsonic
conditions, M ∼ 10−4. In the radiation-dominated era, the
relativistic equation of state p ¼ ρ=3 sets the sound speed
to c=

ffiffiffi

3
p

.
In the following discussion, we use the results obtained

by Wagstaff et al. [33], where the authors estimate the
magnetic fields generated by a SSD in the primordial
Universe and follow the evolution of these fields to estimate
the IGMF at present day. In the aforementioned work,
physical quantities like the magnetic field strength and their
coherence length are calculated in a comoving frame and
are evaluated at the present-day epoch. We note that the
local viscosity, which determines the high Reynolds
and Prandtl numbers, are set by the relativistic background
in the early Universe. However, the velocity fluctuations
responsible for driving the turbulence in the early Universe
are nonrelativistic; therefore, for our simulations of the
SSD in the radiation-dominated era, the nonrelativistic
MHD equations are appropriate (see Supplemental
Material, Sec. B [46]). We also note that we apply our
results to the baryon-photon fluid in the early Universe
prior to recombination, where using the comoving coor-
dinates with the above-mentioned relativistic equation of
state is a suitable approach [16,46–51].
Now, we will apply our results for the SSD in the

subsonic regime to the early Universe dynamo. The
turbulent dynamo action occurs on timescales substantially
smaller than the expansion of the early Universe (see
Supplemental Material, Sec. C [46]). At M ∼ 10−3 we
report the saturation efficiency to be ∼8.3 × 10−3. Taking
the value of the saturation efficiency at M ∼ 10−3 to be a
lower bound for the early Universe dynamo, we predict the
generation of magnetic fields with strengths≳9.1×10−17G
on scales up to λc ∼ 0.1 pc through the dynamo action
driven by PDPs. If the SSD is driven by first-order phase
transitions, we predict that the dynamo generates much
higher magnetic field strengths of ≳9.1 × 10−14 G on
scales up to λc ∼ 100 pc [33]. We note that these values
are lower limits, as the magnetic field generated increases
with the saturation efficiency, which is likely to be
appreciably greater in the early Universe. We also note
that these dynamo-amplified magnetic fields are well below
the recent subnanogauss upper limits placed on PMFs [32]
but likely too weak to alleviate the Hubble tension [52].
The conservative estimates of the lower bounds on the

IGMF from blazar γ-ray observations are 10−17–10−14 G
on scales of 0.1 pc and 10−19–10−15 G on scales of 100 pc
[11,12]. The SSD mechanism driven by first-order phase
transitions in the early Universe can therefore explain the
lower limit on the IGMFs on scales of ∼100 pc. Our
important conclusion is that the dynamo mechanism driven
by velocity fluctuations generated by the PDPs can produce
appreciable magnetic fields at shorter scales up to 0.1 pc
comparable to the lower bounds on the IGMF at these
scales. This raises the interesting possibility of explaining

FIG. 2. Saturation efficiency ðEmag=EkinÞsat (top) and solenoi-
dal ratio Esol=Etot (bottom) as a function of Mach number for
solenoidal fraction (ζ) of 0.1, 0.01, 0.001, 0.0001, and 0 in the
turbulent driving on 1283 grid cells. Dark blue (diamond) data
points show purely compressive and purely solenoidal driving
cases taken from Fig. 3 in Federrath et al. [3]. The dotted black
lines show the fits to the data to guide the eye. The black data
points in the top panel correspond to the simulations done on
2563 grid cells for ζ ¼ 0.01 and ζ ¼ 0.001. The gray data points
at M ∼ 0.01 and 0.05 in the top panel correspond to simulations
done on 5123 grid cells (for ζ ¼ 0.01) and 5763 grid cells (for
ζ ¼ 0.001). The gray plus symbols in the top panel correspond to
nonideal MHD simulations on 2563 grid cells for ζ ¼ 0.01 and
ζ ¼ 0.001 and Mach numbers in the range M ∼ 5 × 10−3 − 0.1
with Reynolds number Re ¼ 1500 and magnetic Prandtl number
Pm ¼ 2; i.e., these are approximately the effective Re and Pm
numbers for all the simulations on 1283 grid cells.
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the IGMF lower bounds on these scales, without invoking
beyond the standard model physics, i.e, without requiring a
first-order phase transition. In case a first-order phase
transition occurs in the early Universe, it could generate
stronger magnetic fields. However, the possibility of such
an event in the primordial Universe is uncertain.
These primordial fields can act as seeds for galactic

dynamos and may influence the formation of the first stars
[53,54]. The Reynolds number and the Prandtl number in
the early Universe are orders of magnitude higher than what
we achieve in our simulations. In this limit, the growth rate
increases with the Reynolds number as Γ ∝ Re1=2 [45].
Therefore, the growth rate of the early Universe dynamo
will be much higher than what is predicted from our
simulations [4,33].
Conclusions.—In this exploratory study of the highly

subsonic MHD regime, we find that the small-scale
dynamo amplifies magnetic fields efficiently for all the
turbulent forcing models we have studied and the saturation
efficiency increases with decreasing Mach number in the
highly subsonic limit. Our results in this previously unex-
plored regime may be regarded as a proof of concept and
can have wide-ranging applications for systems governed
by MHD turbulence.
The results of this Letter can be used to estimate the

magnetic field strengths produced in the early Universe by
using the purely compressively driven dynamo model. We
find the small-scale dynamo action in the early Universe
can generate magnetic fields with strength greater than
∼10−16 G on scales up to 0.1 pc when the turbulence is
forced by primordial density perturbations and field
strengths greater than ∼10−13 G on scales up to 100 pc
when forced by first-order phase transitions. This predic-
tion produces fields compatible with lower limits of the
intergalactic magnetic field inferred from blazar γ-ray
observations on these scales.
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