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Gravitational theories differing from general relativity may explain the accelerated expansion of the
Universe without a cosmological constant. However, to pass local gravitational tests, a “screening
mechanism” is needed to suppress, on small scales, the fifth force driving the cosmological acceleration.
We consider the simplest of these theories, i.e., a scalar-tensor theory with first-order derivative self-
interactions, and study isolated (static and spherically symmetric) nonrelativistic and relativistic stars. We
produce screened solutions and use them as initial data for nonlinear numerical evolutions in spherical
symmetry. We find that these solutions are stable under large initial perturbations, as long as they do not
cause gravitational collapse. When gravitational collapse is triggered, the characteristic speeds of the scalar
evolution equation diverge, even before apparent black-hole or sound horizons form. This casts doubts on
whether the dynamical evolution of screened stars may be predicted in these effective field theories.
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Introduction.—The accelerated expansion of the universe
is among the biggest mysteries of cosmology. While achiev-
able by a cosmological constant or a dark-energy (DE)
component, these possibilities face long-standing theoretical
issues [1]. Thus, the possibility that cosmic accelerationmay
arise from a modification of general relativity (GR) on
cosmological scales has attracted considerable attention [2].
The simplest extension of GR is provided by scalar-

tensor theories, where gravity is described not only by two
tensor polarizations but also by a scalar graviton. Their
most general form is given by degenerate higher-order
scalar-tensor theories [3], which contain well-known exam-
ples such as the Fierz-Jordan-Brans-Dicke (FJBD) theory
[4–6], the dilatonic Gauss-Bonnet theory [7], Horndeski [8]
and beyond-Horndeski [9] theories, etc.
While scalar-tensor theories can produce self-accelerated

cosmic expansion without a cosmological constant [10],
they typically also produce local deviations from GR on
small scales [11]. These include the solar system and binary
pulsars, where GR has been tested to exquisite accuracy
[12–14], and the compact-object binaries observed by
gravitational-wave (GW) interferometers [15]. However,
some theories possess “screening mechanisms” (Vainshtein
screening [16,17], k-mouflage [18], chameleon or symme-
tron screening [19,20], etc.) that locally produce a GR-like
phenomenology, potentially passing existing constraints.
Screening has only been tested in static or quasistatic
configurations, but its validity is also often taken for
granted in dynamical settings, e.g., GW generation [21].
Here, we will verify this assumption.

We consider scalar-tensor theories with first-order
derivative self-interactions (k-essence [22,23]). Among
the many theories aiming to explain DE, k-essence is
among the few unconstrained by the GW170817 bound on
the GW speed [24,25] and by other constraints based on
GW propagation [26–28]. By studying static and spheri-
cally symmetric solutions, we confirm the presence of
“kinetic” screening (k-mouflage [18]) in nonrelativistic
stars, and extend it to fully relativistic, compact stars.
Then, we consider spherically symmetric time evolutions of
these screened solutions, using the fully nonlinear code
of [29].
Static spherically symmetric screening.—With units

ℏ ¼ c ¼ 1 and signature ð−þþþÞ, the k-essence action
in the Einstein frame is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
M2

Pl

2
R̃þ KðX̃Þ

�
þ Sm½gμν;Ψ�: ð1Þ

Here, MPl ¼ ð8πGÞ−1=2 is the Planck mass; gμν ¼ AðϕÞg̃μν
and g̃μν are, respectively, the metrics in the Jordan and
Einstein frames; the conformal factor is AðϕÞ ¼ eαϕ=MPl ,
where α ∼Oð1Þ is dimensionless; g̃ and R̃ are the (Einstein-
frame) metric determinant and Ricci scalar; X̃ ≡ ∇̃μϕ∇̃μϕ
is the standard kinetic term of the scalar field ϕ. Variation of
the action yields

G̃μν ¼ 8πG½KðX̃Þg̃μν − 2K0ðX̃Þ∇̃μϕ∇̃νϕþ T̃μν�; ð2Þ
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∇̃μ½K0ðX̃Þ∇̃μϕ� ¼ 1

4
A−1ðϕÞA0ðϕÞT̃; ð3Þ

where G̃μν and T̃μν are, respectively, the Einstein and
energy-momentum tensors in the Einstein frame [30].
For KðX̃Þ we consider only the lowest-order terms

KðX̃Þ ¼ −
1

2
X̃ þ β

4Λ4
X̃2 −

γ

8Λ8
X̃3; ð4Þ

with Λ the strong-coupling scale of the effective field
theory (EFT), and β; γ ∼Oð1Þ dimensionless coefficients.
We assume that the background scalar field is responsible
for DE, therefore, Λ ∼ ðH0MPlÞ1=2 ∼ 5 × 10−3 eV, where
H0 is the present-day Hubble expansion rate. It is exactly
the hierarchy MPl ≫ Λ, needed for cosmology, that allows
for screening local scales (a much larger Λ would make
k-essence equivalent to FJBD, where no screening
appears). Screened solutions are possible for any β <
0; γ > 0 [31], but in the following, we set β ¼ 0 and
γ ¼ 1, which ensures that 1þ 2XK00ðXÞ=K0ðXÞ > 0 for all
X (a sufficient condition to avoid Tricomi-type breakdowns
of the Cauchy problem [29]; see, also, [36,37]). Our
conclusions also hold for more general β and γ, if they
are such that this condition holds (see examples in [29]).
In more detail, [18] suggested that nonrelativistic stars in

k-essence present a k-mouflage mechanism, whereby GR is
recovered within a “screening radius” rk ∼ Λ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=MPl

p
(withM the star’s mass), as a result of the nonlinear terms in
Eq. (4) dominating over the linear one [38]. To check this,
first, we consider constant-density, nonrelativistic stars.
Using the same weak-field approximation applied in
[41,42] to study screening in massive (bi-)gravity, we obtain
an approximate equation for the scalar-field radial derivatives
y≡ ϕ0 and y0 (with 0 ≡ d=dr)

rρ
MPlΛ2

¼ y0
�ð3α2 þ 2Þr

αΛ2
þ r2y
MPlΛ2

þ 15γry4ð2MPl þ αryÞ
4MPlαΛ10

�

þ 2ð3α2 þ 2Þy
αΛ2

þ 2α2ry2

MPlΛ2
þ 3γy5

αΛ10
þ 3γry6

MPlΛ10

þ 5αγr2y7

4M2
PlΛ10

: ð5Þ

Approximate analytic solutions to this equation can be
obtained in the stellar interior: y1 ≈ ½αρrΛ8=ð3γMPlÞ�1=5;
in the exterior within the screening radius: y2 ≈
½αMΛ8=ð4πγMPlr2Þ�1=5; and outside the screening radius:
y3 ≈ const=r2. In the FJBD case β ¼ γ ¼ 0, an approxi-
mate solution is given by y3 outside the star and by y0 ≈
αρr=½2MPlð2þ 3α2Þ� inside.
These approximate solutions show that, in k-essence, the

scalar derivative (which encodes the additional “fifth force”
beyond GR) is suppressed inside rk. However, the inner
solution is not regular at the star’s center. Regularity
requires y ¼ ϕ0 ∝ r when r → 0, and a different behavior

is not acceptable, as it would cause the appearance of a
central conical singularity.
To amend this behavior, we numerically solve Eq. (5),

imposing y → 0 when r → 0 as a boundary condition. This
completely determines the solution as Eq. (5) does not
involve y00. Thus, it is not trivial that the regular solution
will match the approximate ones (y1, y2, y3) above. In more
detail, since Eq. (5) is singular at r ¼ 0, we must solve it
perturbatively at small radii, imposing y ∝ r when r → 0.
This yields another approximate solution, (which at leading
order, matches the approximate FJBD inner solution y0)
which we use to “inch away” from r ¼ 0 and provide initial
conditions for the numerical integration. This procedure
gives the numerical solution (regular at the center) shown
by a solid line in Fig. 1 (left panel), where we also compare
to the approximate solutions y0, y1, y2, and y3. As can be
seen, the regular numerical solution matches the approxi-
mate solutions y1, y2, and y3 everywhere but near the
center, where we find agreement with y0 (the FJBD
solution), instead.
These results confirm the existence of (regular)

k-mouflage solutions in nonrelativistic stars, but it is not
obvious that the same will apply to strongly gravitating
relativistic stars, e.g., neutron stars, or even for weakly
gravitating stars when the full system (2)–(3) is solved
simultaneously. Therefore, we write Eqs. (2) and (3) using a
spherically symmetric ansatz for the (Einstein-frame)
metric ds̃2 ¼ g̃ttðr̃Þdt2 þ g̃r̃ r̃ðr̃Þdr̃2 þ r̃2dΩ2 and for the
scalar field and solve the coupled system by imposing
regularity at the center. Since Eqs. (2) and (3) depend on ϕ
[and not only on ϕ0 and ϕ00, unlike Eq. (5)], an additional
boundary condition is needed for ϕ. Thus, we require
ϕ to approach a constant ϕ∞ at spatial infinity. If we
take jϕ∞j=Λ≲ 1, as expected from cosmological
considerations, results are robust against the exact value
of ϕ∞.
We adopt a polytropic equation of state p ¼ KρΓb,

p ¼ ðΓ − 1Þðρ − ρbÞ—with p; ρ; ρb, the pressure, energy
density and baryonic density—in the Jordan frame (thus, the
equation of state in the Einstein frame involves the con-
formal factor, cf. [32,33]). We use K ¼ 123G3M2

⊙=c6 and
Γ¼2 for neutron stars, andK¼5.9×10−3G1=3R2=3

⊙ =c2=3 and
Γ ¼ 4=3 for weakly gravitating, Sun-like stars. We impose
regularity by perturbatively solving the equations near the
center, and use this solution to provide initial conditions for
the outbound integration at small but nonzero r. These initial
conditions depend on the central values of the scalar field
and density. We fix the former via a shooting procedure by
requiring ϕ → ϕ∞ as r → ∞, while the central density is
varied on a grid to produce stars of different masses.
The solution for a Sun-like star is shown in Fig. 1 (left

panel, dotted orange line), and presents the same qualitative
features as the approximate solution obtained previously.
Similarly, the radial profile of ϕ0 for neutron stars (right
panel, solid orange line) shows kinks right outside the
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center, at the stellar surface, and at the screening radius.
We also plot, by a dashed green line, the solution to
Eq. (2)–(3) obtained for β ¼ γ ¼ 0 (i.e., FJBD). The k-
mouflage solution matches the FJBD one near the center
and outside rk, but deviates from it (suppressing ϕ0 and,
thus, the scalar force) when nonlinearities become impor-
tant (i.e., when X=Λ4 ≳ 1). Similar plots and conclusions
apply to generic β < 0 and γ > 0.
Again, for neutron stars, in Fig. 2 (left panel), we

show the ratio of the Newtonian force jdU=drj, with
U ¼ −ðgtt þ 1Þ=2 the Newtonian potential, for solutions
in k-essence and FJBD theory with respect to solutions in
GR, as a function of the Jordan-frame areal radius r.

Note that the scalar-field contribution (fifth force) is sup-
pressed in k-essence relative to FJBD theory inside rk, as
expected from screening. In Fig. 2 (right panel), we also
show the fractional deviations of the (Jordan-frame) metric
components gtt and grr from GR, in FJBD theory (with
α ¼ 1=2 and α ¼ 5 × 10−3) and in k-essence (with
α ¼ 1=2). Note that the tiny deviations from GR in k-
essence suggest that not only is the Newtonian dynamics
essentially equivalent to GR’s but that the same also holds
at first post-Newtonian order. This is apparent from the
comparison with FJBD theory with α ¼ 5 × 10−3, which is
in agreement with current solar system tests of the post-
Newtonian dynamics [13,14,32,33].

FIG. 2. Deviations of the metric and its derivatives from GR, for k-essence with γ ¼ 1 and α ¼ 1=2, and for FJBD (with α ¼ 1=2 and
α ¼ 5 × 10−3, the latter referred to as FJBDweak). Left: Ratio of the Jordan-frame Newtonian forces with the GR counterpart. The FJBD
star is slightly smaller than in GR, which explains the feature at r=M⊙ ∼ 10. Right: The fractional deviation from GR of the grr (upper
panel) and gtt (lower panel) components of the Jordan-frame metric.

FIG. 1. ϕ0 vs r for γ ¼ 1 and α ¼ 1=2. Left: Aweakly gravitating, Sun-like star. We plot the numerical solution of Eq. (5) (solid blue
line), the approximate solutions y0, y1, y2, y3 (dashed blue lines), and the numerical solution of the full system Eqs. (2) and (3) (dotted
orange line). Right: A neutron star in k-essence (solid orange line) and FJBD (β ¼ γ ¼ 0, dashed green line).
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Screening perturbations and time evolutions.—To check
the stability of our static spherical solutions, we numeri-
cally evolve the scalar, the metric, and the matter fields
according to Eqs. (2) and (3). We employ the 1þ 1 (i.e.,
spherically symmetric but time-dependent) fully nonlinear
evolution code used in [29] for the vacuum case, supple-
menting it with matter as described in [43]. Both the
matter’s and the scalar’s evolution are expressed as con-
servation laws and integrated with high-resolution shock-
capturing (HRSC) methods. First, we checked that, if static
spherical solutions (for both Sun-like and neutron stars) are
used as initial data, the system does not evolve (e.g., case A
in Fig. 3) [44]. However, if we perturb them (in their matter
or scalar content), the results vary dramatically according to
Λ and the perturbation amplitude or sign.
For Λ≳ 107 eV, the static spherical initial data show no

screening and are very similar to FJBD theory, as expected.
Nonlinearities in the scalar sector are never excited and
evolutions are well behaved, however large the initial
perturbations. For screened solutions (Λ≲ 106 eV), the
outcome of time evolutions depends on the initial pertur-
bation amplitude or sign. Small perturbations (case B in
Fig. 3) and large ones initially decreasing the stellar
compactness (case C in Fig. 3) oscillate but do not grow,
confirming the stability of the screened solutions. However,
when large perturbations have the right sign to trigger
gravitational collapse (case D in Fig. 3), the characteristic
propagation speeds of the scalar-field equation eventually
diverge, even before apparent or black-hole horizons form.
In more detail, the characteristic speeds are encoded in the
principal part (i.e., the part involving only the highest
derivatives) of Eq. (3), which is given by γμν∇̃μ∇̃νϕ, with

γμν ≡ g̃μν þ 2½K00ðX̃Þ=K0ðX̃Þ�∇̃μϕ∇̃νϕ. Writing the princi-
pal part in first-order form, i.e., ∂tU þ V∂rU, with
U ≡ ð∂tϕ; ∂rϕÞ and V the characteristic matrix, the char-
acteristic speeds are then the eigenvalues of V [29]

v� ¼ −
γtr

γtt
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðγμνÞ
ðγttÞ2

s
: ð6Þ

Their nonlinear divergence, appearing because γtt → 0, is
also known to plague k-essence in vacuum (for initial data
close to critical collapse) [29,47,48] and resembles that of
the Keldysh equation t∂2

tϕðt; rÞ þ ∂2
rϕðt; rÞ ¼ 0, which is

hyperbolic with characteristic speeds �ð−tÞ−1=2 for t < 0.
The problem persists when looking for screened solutions
through relaxation of GR stars, as done in [32].
As we stressed in [29], diverging characteristic speeds

are not necessarily pathological and may occur because of
gauge choices (see, e.g., a wave equation on flat space in
Eddington-Finkelstein coordinates, ds2¼−dv2þ2dvdrþ
r2dΩ2). As in vacuum [29], the characteristic speeds may
be kept finite during the evolution if a nonvanishing shift in
the metric is allowed. Nevertheless, because of the non-
linear nature of the field equations, we could not identify a
suitable coordinate condition (i.e., a choice of lapse and/or
shift) avoiding these divergences and simultaneously pro-
ducing stable evolutions at least in 1þ 1 dimensions. We
tried different shift conditions that successfully keep the
velocities finite, but those still lead to unstable evolutions
even with HRSC methods. Whatever its interpretation
(physical or due to the gauge), the divergence of the
characteristic speeds is troublesome in practice. The
Courant-Friedrichs-Lewy stability condition implies that
the time step Δt of a numerical evolution should be
Δt < Δr=v, with Δr the spatial resolution and v the
maximum characteristic speed. Clearly, Δt → 0 as
v → ∞, i.e., simulations must grind to a halt when the
characteristic speeds diverge.
Therefore, our results suggest that the field equations of

k-essence cannot be evolved starting from k-mouflage
solutions. A possible practical solution to evolve the
dynamics of k-mouflage may consist of using implicit
methods [49,50]. However, the latter may not recover the
system’s true dynamics, as they might miss the small-
timescale features of the solution (and their cumulative
secular effect, if any). In other words, implicit methods
integrate out the UV details of the solution, which might be
crucial for achieving a well-posed Cauchy evolution.
Conclusions.—We have shown that kinetic screening

(k-mouflage) of scalar effects occurs in isolated stars in
k-essence, even when the stars are highly compact or
relativistic, and the physically important requirement of
regularity at the star’s center is accounted for. k-mouflage
solutions are stable to small perturbations, and also to large
ones as long as they do not cause gravitational collapse.

FIG. 3. Evolution of the (Einstein-frame) central density of
a k-mouflage star for Λ ≃ 106 eV (with α ≃ 0.2 and γ ¼ 1), for
unperturbed initial data (A); small initial perturbations (B); large
perturbations that initially decrease (C) or increase (D) the star’s
compactness. Case D leads to collapse and diverging character-
istic speeds (at the time marked by a cross).
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However, when large perturbations with the right sign for
triggering collapse are applied to k-mouflage solutions, the
evolution leads to diverging characteristic speeds for the
scalar well before the formation of apparent black-hole or
sound horizons. This divergence might not be pathological
in itself, but prevents dynamical evolutions of the collapse
of k-mouflage stars. Thus, k-essence loses predictability on
k-mouflage configurations subject to these large perturba-
tions. This is a serious flaw, as the theory cannot make
predictions about the general time-dependent evolution of
stars (including their collapse to a black hole), at least in
1þ 1 dimensions. This is markedly different than in GR
[51,52] or FJBD [32], where spherical dynamical simu-
lations of compact objects present no such problems.
Therefore, if kinetic screening exists, k-essence is (at best)
incomplete in general dynamical settings. A UV comple-
tion of k-essence may render the time evolution of screened
stars well posed. However, it is not guaranteed that k-
mouflage solutions will still be present in such UV
completions, see, e.g., [53]. Moreover, positivity bounds
suggest that locality and/or Lorentz invariance may have to
be violated to UV complete the theory [34], if screening
solutions are to be present. However, one may attempt to
modify the theory’s equations in a UV-agnostic way
inspired by dissipative hydrodynamics, possibly allowing
for successfully evolving the dynamics [54].
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