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We present a unified exact tensor network approach to compute the ground state energy, identify the
optimal configuration, and count the number of solutions for spin glasses. The method is based on tensor
networks with the tropical algebra defined on the semiring of ðR ∪ f−∞g;⊕;⊙Þ. Contracting the tropical
tensor network gives the ground state energy; differentiating through the tensor network contraction gives
the ground state configuration; mixing the tropical algebra and the ordinary algebra counts the ground state
degeneracy. The approach brings together the concepts from graphical models, tensor networks,
differentiable programming, and quantum circuit simulation, and easily utilizes the computational power
of graphical processing units (GPUs). For applications, we compute the exact ground state energy of Ising
spin glasses on square lattice up to 1024 spins, on cubic lattice up to 216 spins, and on three regular random
graphs up to 220 spins, on a single GPU; we obtain exact ground state energy of �J Ising spin glass on the
chimera graph of D-Wave quantum annealer of 512 qubits in less than 100 s and investigate the exact value
of the residual entropy of�J spin glasses on the chimera graph; finally, we investigate ground-state energy
and entropy of three-state Potts glasses on square lattices up to size 18 × 18. Our approach provides
baselines and benchmarks for exact algorithms for spin glasses and combinatorial optimization problems,
and for evaluating heuristic algorithms and mean-field theories.
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Introduction.—Combinatorial optimization problems are
fundamental to theoretical studies in statistical physics and
computer science. Efficient solutions to combinatorial
optimization problems are also relevant to many practical
applications such as operations research and artificial
intelligence. A prototypical combinatorial optimization
problem is finding the ground state of the Ising spin glass
with the energy function

EðfσgÞ ¼ −
X
i<j

Jijσiσj −
X
i

hiσi; ð1Þ

where fσg ∈ f�1gN denotes a configuration of N Ising
spins. Such a problem arises in broad contexts ranging from
magnetic properties of dilute alloys [1] to probabilistic
inference in graphical models [2]. Finding the ground state
of the spin glass is non-deterministic polynomial-time (NP)-
hard except on some special graphs [3]. This implies that an
efficient solution to the problem is unlikely unless P ¼ NP.
Many NP problems have convenient Ising spin glass
formulation [4]. In past decades, various approaches have
been applied to such a problem, including simulated

annealing on classical computers [5] and quantum annealing
on manufactured quantum devices [6].
Besides the ground state energy and configurations,

counting the number of ground-state configurations is also
of interest from a physics and optimization perspective. The
number of degeneracy characterizes the level of frustration
and gives rise to residual entropy of the system at zero
temperature [7]. For example, there can be an exponentially
large number of degenerated ground states of the spin glass
such that the system exhibits finite entropy density in the
thermodynamic limit. Unfortunately, counting the number
of the degenerated ground state of spin glasses is #P
complete [8] which can be even harder than finding the
ground state.
In this Letter, we present a unified approach to compute

ground state energy, find out the ground state configuration,
and count theground state degeneracy of spin glasses exactly.
The approach is based on the exact contraction of the tensor
networks with tropical numbers which compute the spin-
glass partition function directly in the zero-temperature limit.
In principle, the approach is not conceptually new since there
can be equivalent dynamic programming ormessage passing
formulations. It is rather a synthesis of techniques in
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combinatorial optimization, graphical models, and machine
learning into a unified framework in the language of tensor
networks, which provides valuable insights for efficient and
generic implementations. In particular, the tropical tensor
network offers a general computational framework so that
one can easily exploit software and hardware advances in
quantum circuit simulations, automatic differentiation, and
hardware accelerations. In this regard, the approach adds
another example along the fruitful line of research bridging
graphical models, tensor networks, and quantum circuits
[9–17].
There were previous efforts of investigating low-temper-

ature properties of spin-glasses using approximated tensor
contraction methods [17–19]. Among other things, these
approaches and the related transfer matrix approach [20,21]
face numerical issues at low temperatures due to the
cancellation of tensor elements with exponential scales
[22]. References [23,24] investigated the residual entropy
of infinite translational invariant frustrated classical spin
systems by constructing tensor networks according to local
rules of the ground-state manifold. More closely related to
the present Letter, one can employ exact tensor network
contraction to count the number of solutions in the
constraint satisfaction problems [25–28], however, with
the ground-state energy known to be zero a priori.
Tropical tensor network.—Tropical algebra is defined by

replacing the usual sum and product operators for ordinary
real numbers with the max and sum operators, respectively,
[29]

x ⊕ y ¼ maxðx; yÞ; x ⊙ y ¼ xþ y: ð2Þ

One sees that −∞ acts as the zero element for the tropical
number since −∞ ⊕ x ¼ x and −∞ ⊙ x ¼ −∞. On the
other hand, 0 acts as the multiplicative identity since
0 ⊙ x ¼ x. The ⊕ and ⊙ operators still have commutative,
associative, and distributive properties. However, since
there is no additive inverse, the ⊕ and ⊙ and operations
define a semiring over R ∪ f−∞g. The semiring formu-
lation unifies a large number of inference algorithms in the
graphical models based on dynamic programming [30,31].
Recently, there have been efforts in combing the semiring
algebra with modern deep learning frameworks with
optimized tensor operations and automatic differentiation
[32,33].
One can consider tensor networks whose elements are

tropical numbers with the algebra Eq. (2). Since the
elementary operations involved in contracting tensor net-
works are just sum and product, the contraction of tropical
tensor networks is well defined. One can use such con-
traction to solve the ground state of the Ising spin glass. For
example, consider the Ising spin glasses Eq. (1) defined on
a two-dimensional square lattice, the tropical tensor net-
work is shown in Fig. 1(a). The tensor network represen-
tation corresponds to the factor graph of the spin-glass

graphical model [30]. There are 2 × 2 tropical tensors

that reside on the bond connecting

vertices i and j, with the tensor elements being the negative
coupling energies. The dots are diagonal tensors with

, , and −∞ for all other tensor

elements. In cases where the local field vanishes, these dots
reduce to the copy tensor in terms of the tropical algebra
which demands that all the legs have the same indices.
Contraction of the tensor network under the tropical algebra
gives the ground state energy of the Ising spin glass. In the
contraction, the ⊕ operator selects the optimal spin
configuration, and the ⊙ operator sums the energy con-
tribution from subregions of the graph. The intermediate
tensors record the minimal energy given the external tensor
indices, so they correspond to max marginals in the
graphical model [34].
From a physics perspective, the tropical tensor network

naturally arises from computing the zero-temperature
limit of the partition function Z ¼ P

fσg e−βE. The ground
state energy, E� ¼−limβ→∞ð1=βÞlnZ¼−limβ→∞ð1=βÞ×
ln
P

fσg
Q

i<j e
βJijσiσj

Q
i e

βhiσi , involves ordinary sum and
product operations for the Boltzmann weights. When
taking the zero temperature limit, it is more convenient
to deal with the exponents directly,

lim
β→∞

1

β
lnðeβx þ eβyÞ ¼ x ⊕ y;

1

β
lnðeβx × eβyÞ ¼ x ⊙ y;

ð3Þ

which leads to the tropical algebra Eq. (2). The tropical
representation also corresponds to the logarithmic number
system [35] which avoids the numerical issue in dealing
with exponentially large numbers on computers with finite
precision numerics [22].
Moreover, one can also employ the present approach to

count the number of ground states at the same computa-
tional complexity of computing the ground state energy. To
implement this, we further generalize the tensor element to
be a tuple ðx; nÞ composed by a tropical number x and an

(a) (b)

FIG. 1. (a) The tensor network representation of a square lattice
Ising spin glass. (b) An equivalent circuit representation used for
the practical simulation. See text for the definition of the symbols.
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ordinary number n. The tropical number records the
negative energy, while the ordinary number counts the
number of minimal energy configurations. For tensor
network contraction, we need the multiplication and
addition of the tuple: ðx1;n1Þ⊙ðx2;n2Þ¼ðx1þx2;n1×n2Þ
and

ðx1; n1Þ ⊕ ðx2; n2Þ ¼

8>><
>>:

ðx1 ⊕ x2; n1 þ n2Þ if x1 ¼ x2
ðx1 ⊕ x2; n1Þ if x1 > x2
ðx1 ⊕ x2; n2Þ if x1 < x2 :

ð4Þ

Essentially, these two numbers in the tuple correspond to
the leading order and theOð1=βÞ contributions (energy and
entropy) in the low-temperature expansion of the log-
partition function. After contracting the tensor network,
one reads out the ground state energy and degeneracy from
the two elements of the tuple. In this way, one can count the
number of optimal solutions exactly without explicitly
enumerating the solutions [36,37].
Contract tropical tensor networks.—We have formulated

the computation of the ground state energy and the ground
state degeneracy of the Ising spin glass Eq. (1) as a
contraction of the tropical tensor network. On a tree graph,
contraction of the tropical tensor network is equivalent to
the max-sum algorithm [2], i.e., the maximum of a
posterior version of the sum-product (belief propagation)
algorithm on graphical models. On a general graph, when
the junction tree algorithm [38] applies it can be treated as a
special case of the tropical tensor network contraction
algorithm using a specific contraction order utilizing a tree
decomposition of the graph.
The contraction of a general tensor network belongs to the

class of #P hard problems [39], so it is unlikely to find
polynomial algorithms for exact contractions. Algori-
thmically, the computational complexity of tensor network
contraction is exponential to the tree width of the network
[9]. On a regular graph (e.g., 2D lattice), one can easily find a
good contraction order that has an optimal computational
complexity.However, on a general graph, a good contraction
order is usually difficult to find, thus one usually relies on
heuristic algorithms to identify a contraction order with low
computational complexity. Reference [9] proposed to use
tree decomposition of the line graph of the tensor network,
found by a branch and bound algorithm. This has been
widely adopted in subsequent works on classical simulation
of quantum circuits with tensor networks [14,40–46].
Recently, more advanced heuristic algorithms have been
developed by combining graph partition algorithms and
greedy algorithms [47,48].
In addition to a good contraction order, efficient linear

algebra libraries are also important for the performance of
the contractions. For ordinary contractions, the basic linear
algebra subprograms (BLAS) library is a standard tool for

performing efficient product and plus operations, and can
fully release the computational power of specialized hard-
ware such as graphical processing units (GPUs) and tensor
processing units. For tropical algebra, fortunately, basic
operations can be inherited from standard linear algebra
libraries as long as they are programmed in a generic
manner to support ⊕ and ⊙ operators. When performing
contractions on GPUs, another important factor is memory
efficiency, that is, all operations should be performed in-
place without allocating extra memory. This actually shares
the same demand as the simulation of quantum circuits. To
this end, one can actually contract tropical tensor networks
by repurposing software that was originally developed for
quantum circuit simulations.
To sum up, the tropical tensor network formulation

opens a way to leverage recent algorithmic and software
advances in tensor network contraction for combinatorial
optimization problems. Moreover, the tensor contraction
formation fits nicely to the specialized hardware such as
GPUs, where, as we reported below, one can actually
employ low precision floating numbers (or even integer
type for integral couplings) for better numerical perfor-
mance and reduced memory usage.
Obtaining ground states with automatic

differentiation.—Given the way to compute the ground
state energy of the spin glass, there are several ways to
obtain the ground state configurations. The most straight-
forward way would be running the same energy minimi-
zation program repeatedly with perturbed fields. Since the
ground state energy is a piecewise linear function of the
fields, the numerical finite difference of the energy with
respect to fields suffices to determine the ground state
configurations [49]. Alternatively, one can impose an
arbitrary order of the spin variables and compute the
conditional probability of a variable being in the ground
state given the previous ones, then sample the ground state
configurations according to the conditional probability
[34]. Both methods need to re-run the contraction algorithm
OðNÞ times with the same memory cost as finding the
ground state energy. One can nevertheless trade memory
for computation time by caching intermediate contraction
results and backtracking the computation for minimal
energy configuration.
We employ the differentiable programming technique to

differentiate through the tropical tensor network contrac-
tion [50]. To this end, we program thewhole tensor network
contraction in a differentiable way and compute the
gradient of the contraction outcome with respect to the
tensor elements using automatic differentiation. We note
that the general idea of differentiating through a combina-
torial optimization solver applies to cases beyond tropical
tensor network contraction [51]. It is well known that there
is a time-space trade-off in different ways of performing
the automatic differentiation to a computer program [52].
The forward mode automatic differentiation (such as
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ForwardDiff.jl [53]) has the same time and memory cost as the
finite difference approach. While in the other extreme limit,
the reverse mode automatic differentiation (such as Nilang.jl

[54]) displays theOð1Þ computation overhead compared to
the forward tensor contraction, and OðNÞ memory over-
head. The time versus memory trade-off can be further
controlled flexibly by using the checkpointing tech-
nique [52].
Applications.—We first apply the tropical tensor network

approach to the Ising spin glasses on L × L square lattices,
with the tensor network shown in Fig. 1(a). Interestingly,
the computation of tensor network contraction is similar to
evolving a quantum state under the action of local quantum
gates, with the crucial difference that we are now dealing
with nonunitary gates with the tropical algebra.
As shown in Fig. 1(b), the tensor network is cast into the

expectation of a tropical circuit on the state vector of 2L

dimension. We denote so that the initial and final

states are both product state
�
0

0

�⊗L
. The square symbols

represent tropical gates, in which and

are single-site gates. The symbol

denotes two site gates acting on neighboring sites.

In fact, it is a diagonal tropical matrix diagðJij;−Jij;−Jij;
JijÞab;cd, with the off-diagonal elements set to −∞. The
order of operation of these diagonal gates to the state vector
can be arbitrary. Exploiting this intimate connection, we
employ the quantum programming software Yao.jl [55] to
contract these tropical tensor networks [56]. It enables us to
obtain the ground state energy of 1024 spins with external
fields in about 590 s on a single Nvidia V100 GPU, with
single-precision floating numbers Float32 for the tensor
elements.
Next, we consider spin glass instances with �J coupling

and no external field on the chimera graph of the actual
D-Wave device [6] shown in Fig. 2(a). The chimera graph
consists of unit cells arranged in a square grid of the size of
L × L. Each unit cell contains eight spins forming a
complete bipartite graph. Each group of four spins within
the unit cell connects horizontally or vertically to the spins
in the neighboring unit cells. We transform the chimera
graph into a tensor network shown in Fig. 2(b) by
exploiting its specific structure [57]. The red and blue
circles are tropical copy tensors that represent a group of
four Ising spins within each unit cell. The black tensor
describes the intra-unit-cell couplings. While the red and
blue squares denote the intercell interaction in the vertical
and horizontal direction, respectively. These tensors are all
16 × 16 tropical matrices that contain the couplings
between the original Ising spins. Such a tensor network

formulation makes better use of the bipartite structure of the
chimera graph than simply grouping the eight spins within
the unit cell together [19]. After turning these tensors into
local tropical gates, contraction of the tensor network can
be carried out as evolution of a state with dimension 16L.
As shown in Fig. 2(c) one can obtain the ground state
energy of 8L2 ¼ 512 Ising spins in 84 s on the Nvidia
V100 GPU. This is much faster than brute force enumer-
ation using GPUs [58]. It is also slightly faster than the
belief propagation exact solver running on 16 CPU cores
used in Ref. [59]. We use Int16 data type for computational
and memory efficiency, which is sufficient for such
calculation since the energy has bounded integral values.
Figure 3(a) shows the histogram of the ground state

degeneracy of the chimera spin glasses. One observes that
the distributions are unimodal and broaden as the system
size enlarges. Figure 3(b) shows the residual entropy
density s ¼ E½ln g�=ð8L2Þ where g is the degeneracy and

(b)(a)

(c)

FIG. 2. (a) A chimera lattice with 4 × 4 unit cells. Dots
represent Ising spins and lines indicate couplings. (b) Tensor
network representation, where each node has a degree of freedom
of four spins. (c) Wall clock time for computing the ground state
energy of Ising spin glass on the chimera graph with the L × L
unit cell (8L2 spins).

(a) (b)

FIG. 3. (a) Histogram of the ground state degeneracy of �J
spin glasses on the chimera graph with L × L unit cells (8L2 Ising
spins). For each system size, we solve 10000 random instances.
(b) The residual entropy density versus system size.
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the expectation is over the 10000 random instances. The
value of the residual entropy approaches s ¼ 0.03 for
increasingly larger system sizes. As a comparison, this
value of the entropy density is smaller than the one of the
�J square lattice Ising spin glass s ≈ 0.07 [21,60–64],
indicating a smaller number of degenerated ground states
on the chimera graph compared to the �J square lattice
spin glasses, possibly due to the larger connectivity in the
Chimera graph which induces more constraints to each spin
in the ground state and suppresses the degeneracy.
For problems on more general graphs, our method

benefits from the contraction order developed in the
quantum computation community [27,47,48,65,66]. As
an example, with the present approach one can compute
optimal solutions and count the number of solutions for
spin glasses and combinatorial optimization problems on
random graphs with hundreds of nodes, and check numeri-
cally the replica symmetry mean-field solutions [67,68].
Details can be found at Ref. [69].
Discussions.—An immediate implication of our method

is that quantum circuit simulators can be repurposed to
solve combinatorial optimization problems. This connec-
tion adds a profitable motivation for crafting efficient and
generic quantum circuit simulators besides validating
quantum devices.
We notice that the state-of-the-art method branch-and-

cut approaches are able to achieve better performance for
spin glasses on 2D lattices. For example, Ref. [70] reached
100 × 100 lattices for a spin glass with Gaussian couplings,
and 50 × 50 lattices with �J couplings [71]. However, the
branch and bound method is less efficient in computing
degeneracies. For example, the branch-and-bound results
for entropy were reported with for 8 × 8 lattices [72], while,
our method works out the ground-state entropy of �J spin
glass on 32 × 32 lattices. Moreover, the linear program-
ming bounding method is sensitive to coupling types and
connectivity of the model. On 2D lattices, the branch-and-
cut method is quite efficient when equipped with the circle
inequality [70] technique, especially with Gaussian cou-
plings. But it turns out to be less efficient when the
topology is a 3D lattice, where only results with 4 × 4 ×
4 ¼ 64 spins are reported in the literature [72]. In contrast,
on 3D lattices, our method works to 6 × 6 × 6 ¼ 216 spins.
More seriously, if the model changes from an Ising spin
glass to a Potts glass, not only the cutting plane method but
also the linear programming bounding method breaks
down. As a relief, one has to develop a more sophisticated
semi-definite programming (SDP) method for providing
energy lower bounds [73,74]. Reference [73] computed the
ground-state energy of a �J three-state Potts glass model
on a 9 × 9 lattice using 10 h. As a comparison, our method
is able to compute both ground-state energy and entropy on
18 × 18 lattices in 10 min, thus is significantly superior to
SDP based branch-and-cut methods for Potts models [69].
Moreover, one could also apply specific bounds on the

ground-state energy to enforce sparsity of the tropical
tensors, this would combine the tropical tensor network
framework with the branch and bound methods.
Moving forward, approximated contraction schemes for

the tropical tensor networks may provide practical algo-
rithms for the optimization and counting of large instances.
A Julia implementation of the tropical tensor network used
in this Letter is available at Ref. [75]. Thanks to generic
programming, a minimalist working example contains only
∼60 lines of code.
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