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Topological quantum computation based on anyons is a promising approach to achieve fault-tolerant
quantum computing. The Majorana zero modes in the Kitaev chain are an example of non-Abelian anyons
where braiding operations can be used to perform quantum gates. Here we perform a quantum simulation of
topological quantum computing, by teleporting a qubit encoded in the Majorana zero modes of a Kitaev
chain. The quantum simulation is performed by mapping the Kitaev chain to its equivalent spin version and
realizing the ground states in a superconducting quantum processor. The teleportation transfers the
quantum state encoded in the spin-mapped version of the Majorana zero mode states between two Kitaev
chains. The teleportation circuit is realized using only braiding operations and can be achieved despite
being restricted to Clifford gates for the Ising anyons. The Majorana encoding is a quantum error detecting
code for phase-flip errors, which is used to improve the average fidelity of the teleportation for six distinct
states from 70.76� 0.35% to 84.60� 0.11%, well beyond the classical bound in either case.
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One of the most attractive ways of performing fault-
tolerant quantum computing [1–8] is topological quantum
computing [9–15]. In topological quantum computing, the
quantum information is stored in the states of anyons,
which have a nontrivial effect on the total state when they
are interchanged. The logical states of the anyons form a
subspace distinguishing the error-free space to those with
errors, and errors are suppressed via the topological gap.
For non-Abelian anyons, their braiding can be used to
construct elementary quantum gates for quantum comput-
ing. The resulting quantum gate is only dependent upon the
topology of the braiding path; thus, small imperfections in
the braiding can be tolerated as long as the operation is
topologically equivalent.
One example of a non-Abelian anyon is the Majorana

zero mode (MZM) [14,16–20]. MZMs are zero energy
excitations that occur typically in low-dimensional topo-
logical superconductors. Two physical systems where

MZMs have been intensely investigated are fractional
quantum Hall systems [21–24] and semiconductor nano-
wires [25–27]. To date, many experiments have been
conducted to find the evidence for the existence of
Majorana fermions; however, the key feature of topological
protection has not yet been demonstrated [28]. An
elementary model that possesses MZMs is the Kitaev chain
consisting of N fermions with Hamiltonian [16],

H ¼
XN−1

n¼1

Δðcncnþ1 þ c†nþ1c
†
nÞ

− tðc†nþ1cn þ c†ncnþ1Þ − μc†ncn; ð1Þ
where cn is a fermionic annihilation operator on site n, and t
is the hopping energy,Δ is the superconducting gap, and μ is
a chemical potential. For finite N and working in the limit
Δ ¼ t and μ ¼ 0, the model has a degenerate ground state,
corresponding to the presence or absence of a pair of MZMs,
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and can be used to encode the state of a qubit. By braiding
one of the MZMs with another, quantum gates on the
encoded quantum information may be performed, thereby
forming the basis for topological quantum computing.
While the direct realization of topological quantum

computing based on MZMs is still out of reach of present
day technology, the study of the Majorana physics is now
possible by way of quantum simulation in other control-
lable systems such as superconducting and ion-trap systems
[29]. Mapping the Kitaev chain to a spin model via the
Jordan-Wigner transformation, the Hamiltonian (1) takes
the form of a one-dimensional transverse field Ising model,
which has made it attractive to numerous proposals for
simulating its equivalent dynamics. Xu, Pachos, and Guo
implemented the spin version of MZMs states in a Kitaev
chain, and braiding of the effective anyons was demon-
strated to realize one qubit gates with imaginary time
evolution [30,31]. Several works have also demonstrated
the path-independent nature of braiding anyonic excitations
in the toric code [32–37]. Simulating the physics of
Majorana fermions by artificially constructed lattice
models can provide additional insight into the nature of
the quantum states, such as allowing one to tap into the
existing pool of ideas on Majorana-based quantum com-
putation [38,39]. To date, such studies have been restricted
to examining the basic properties of anyons, and we are not
aware of any quantum simulation of topological quantum
computing involving more than one encoded qubit.
In this Letter, we investigate the feasibility of topological

quantum computing by simulating the quantum teleportation
[40] of a MZM state of the Kitaev chain on superconducting
qubits.We realize four spin-mappedKitaev chains using eight
superconducting qubits (see Fig. 1). Each chain, consisting of
two physical qubits, encodes a single logical qubit, corre-
sponding to the spin-mappedMZMstates. In the teleportation,
Alice is in possession of two of the Kitaev chains, and Bob
holds the two other chains. The teleportation then transfers a
single logical qubit, encoded as the spin-mappedMZMstates,
fromAlice to Bob. One of thewell-known issues of quantum
computing based on MZMs is that braiding operations only
allow for a discrete number of Clifford gates, which is
insufficient for universal quantum computation [11,41,42].
Fortunately, in the teleportation protocol, only Clifford gates
are required, such that it can be completed entirely with
braiding operations. In addition to demonstrating the feasibil-
ity of anyonic quantum computing, we also show the error
protection capabilities of MZMs. The protection of quantum
information via error correcting codes has been demonstrated
in many past works [43–52], including those based on
topological states [44,52]. We show that the spin-mapped
MZMstates are capable of detecting phase errors, allowing us
to improve the teleportation fidelity significantly.
We first give a brief review of anyonic quantum

computing with MZMs. Each fermion is written in terms
of two Majoranas according to the definition

γn;l ¼ cn þ c†n

γn;r ¼ −icn þ ic†n; ð2Þ

where n is an integer labeling the fermions, and the l; r
label the two types of Majoranas, which correspond to the
real and imaginary parts of the fermion operator, denoted
by the left and right boxes in Fig. 1(b), respectively. Let us
denote j0Li a ground state of the Hamiltonian (1), taken as
the state with no Majorana modes throughout the chain.
The nature of the Kitaev Hamiltonian is such that applying
the fermion creation operator

f† ¼ 1

2
ðγ1;l − iγN;rÞ; ð3Þ

consisting of two Majorana edge modes at the ends of the
lattice, produces another orthogonal degenerate state.
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FIG. 1. Experimental configuration and the mapping of Kitaev
chain to its spin and Majorana representations. (a) The super-
conducting quantum processor. We choose eight adjacent qubits
labelled withQ1 toQ8 from the 12-qubit processor to perform the
experiment. Qubits Q1 to Q4 and Q5 to Q8 are held by Alice and
Bob, respectively. Pairs of qubits form a spin-mapped Kitaev
chain (KC), each which encodes a single logical qubit. Each qubit
couples to a resonator for state readout, marked by R1 to R8. After
decoding, the resonators marked by “syn” are syndrome mea-
surements to detect phase-flip errors in the qubits. An encoded
qubit is teleported from KC1 to KC3. (b) Mapping between spin,
fermions, and Majorana modes. The pairing of Majorana modes
in the topologically nontrivial regime are indicated by the dotted
ovals. In the topologically nontrivial phase, the MZMs are present
at the ends of the chain.
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These two states j0Li and j1Li≡ f†j0i are the MZM states
and are used as the logical qubit states. A minimal
implementation of the Kitaev chain Hamiltonian (1)
consists of two fermions N ¼ 2. Under the Jordan-
Wigner mapping, the Hamiltonian takes a form
H ¼ −tσx1σx2 for Δ ¼ t; μ ¼ 0, and the two MZM states are

j0Li ¼
1ffiffiffi
2

p ðj þ þi þ j − −iÞ

j1Li ¼
1ffiffiffi
2

p ðj þ þi − j − −iÞ: ð4Þ

To encodeM logical qubits, one then preparesM Kitaev
chains, each with the Hamiltonian (1). Let us label the
MZMs from the mth chain as

γðmÞ
l ≡ γðmÞ

1;l

γðmÞ
r ≡ γðmÞ

N;r ; ð5Þ

such that we only label the leftmost and rightmost
Majorana mode in the chain, which are the MZMs. An
MZM, on the mth chain that is in the left- or rightmost
position σ ∈ fl; rg, can be braided with another labeled by

ðm0; σ0Þ. The effect of this is to apply the unitary braid
operator [53,54], defined as

Bðm;σÞðm0;σ0Þ ¼ eπγ
ðmÞ
σ γðm

0Þ
σ0 =4 ¼ 1ffiffiffi

2
p ð1þ γðmÞ

σ γðm
0Þ

σ0 Þ: ð6Þ

For two logical qubits, there are four MZMs, and therefore
there are ð4

2
Þ ¼ 6 possible braiding operations (see Fig. S4

in the Supplemental Material [55]). Because of the non-
Abelian nature of MZMs, these produce gate operations on
MZM states. In our circuit, we utilize the fact that braiding
MZMs on the same chain produce a logical

ffiffiffiffi
Z

p
operation,

and braiding adjacent MZMs on two different chains
produce a logical

ffiffiffiffiffiffiffiffiffiffiffi
X1X2

p
.

The standard quantum teleportation circuit consists of a
sequence of Hadamard and CNOT gates [56], which are not
directly available by braiding operations. To match the
gates that are available with braiding operations as closely
as possible, we design a modified teleportation scheme [see
Fig. 2(a) and the Supplemental Material [55] ]. The pro-
tocol proceeds in a similar way to the standard teleportation
circuit, except that the classically transmitted quantum
correction (“classical correction” for short) is done accord-
ing to the modified rules shown in the classical circuit of
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FIG. 2. Quantum circuits for simulating the teleportation of a MZM encoded qubit. (a) The modified quantum teleportation scheme.
(b) The braiding sequence for MZMs that performs the quantum circuit in (a). (c) The corresponding spin-mapped qubit circuit of the
MZM braiding sequence shown in (b). All measurements are performed in the j0i, j1i, which the exception of the measurement on qubit
6, where tomography (“tomo”) is performed. The measurements marked with syn are syndrome measurements, where single-qubit
phase errors are detected for a measurement outcome of j1i. (d) The gate decompositions for the braiding, encoding, and decoding gates
in (c). In all figures, jψi is the state to be teleported. Black lines connecting the quantum gates denote qubits, dark blue lines denote
MZMs, and orange lines denote classical information transfer.
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Fig. 2(a). Using this modified teleportation circuit, the
equivalent version with MZMs can be constructed entirely
using the six available braiding gates. The one gate that is
not directly available as a braiding gate in the circuit of
Fig. 2(a) is the X-gate for classical correction. No combi-
nation of the six braiding operations in Fig. S4 can produce
a single-qubit X-gate. However, by adding an extra ancilla
MZM qubit (m ¼ 4) prepared in the eigenstate with
X4 ¼ þ1, and applying the braiding operation for the
logical

ffiffiffiffiffiffiffiffiffiffiffi
X3X4

p
twice, we can perform an X3 gate. In this

way, all gates appearing in the teleportation circuit can be
performed natively using only braiding operations
[Fig. 2(b)]. Using a minimal implementation of the Kitaev
chain with N ¼ 2 fermions, and performing a Jordan-
Wigner transformation, we convert the MZM teleportation
circuit [Fig. 2(b)] into the equivalent 8-qubit version as
shown in Fig. 2(c).
In addition to the braiding operations, we require

encoding and decoding operations to prepare the logical
spin-mapped MZM qubit states of (4). The encoder takes
an arbitrary qubit state and an auxiliary qubit in the state j0i
and produces its associated logical spin-mapped MZM
qubit state

Uencj0iðαj0i þ βj1iÞ ¼ αj0Li þ βj1Li; ð7Þ

which can be performed using elementary gates and the
definitions (4). Here α, β are arbitrary complex coefficients
such that jαj2 þ jβj2 ¼ 1. The gate decompositions for the
braiding gates, encoder, and decoder Udec ¼ U†

enc are
shown in Fig. 2(d).
We choose eight adjacent qubits from a 12-qubit super-

conducting quantum processor [57,58] to implement the
quantum circuit of Fig. 2(c). The average fidelities of
single-qubit gates and the controlled-Z gate are approx-
imately 0.9994 and 0.985, respectively. The six input states
of j0i, j1i, jþi, j−i, j þ ii, j − ii, corresponding to pairs of
eigenstates of the Pauli σz, σx, σy operators are prepared on
qubit 2 as the input state for teleportation. To perform the
classical correction steps, we run four versions of the circuit
with and without each of the X and Z classical correction
gates. Then given a particular measurement outcome on
qubits 2 and 4, the correct circuit for that outcome is
selected. To perform the tomography measurement of the
teleported state on qubit 6, we repeat the circuit by making
measurements in the X, Y, Z basis such that the state can be
tomographically reconstructed. Each of the circuit variants
was run a total of 40 000 times for statistics.
Figure 3 shows the teleportation fidelities for each of the

six input states. First, we average over all measurement
outcomes on qubits 1,3,5,7,8, which corresponds to ignor-
ing all error syndrome measurements and any changes in
the ancilla MZM qubit. We find the average fidelity of the
six states is 70.76� 0.35%, which is above the classical
limit of 2=3 [59] by 11 standard deviations. We have

performed an explicit simulation of the circuit shown in
Fig. 2(c) including dephasing and gate errors and obtained
good agreement between the experimentally obtained
errors (see the Supplemental Material [55]). We note that
the experiment further suffers from readout errors, which
are expected to further degrade the theoretical fidelities.
From the operations on qubit 7 and 8, it is apparent that the
final state should be in the state j00i, which is consistent
with the fact that the role of these qubits is only to be in the
X ¼ 1 eigenstate. We experimentally obtain the probability
of getting the j00i state is 97.98%, consistent with this
expectation.
One of the benefits of encoding quantum information

with MZMs is that it allows for a natural way of protecting
against errors. As stated in Kiteav’s original Letter [16]
introducing the model (1), the MZM encoding is resilient
against phase-flip errors because they correspond to non-
local fermion interactions and bit-flip errors because they
corresponds to a parity nonconserving process, which
are both unlikely to occur naturally. Under the spin
mapping, the protection against bit-flip errors is lost, but
protection against phase-flip errors is still present (see the
Supplemental Material [55]). This can be easily seen by
examining the logical states after a phase flip,

j0̃Li ¼ σz1j0Li ¼ σz2j0Li ¼
1ffiffiffi
2

p ðj −þi þ j þ −iÞ

j1̃Li ¼ σz1j1Li ¼ −σz2j1Li ¼
1ffiffiffi
2

p ðj −þi − j þ −iÞ: ð8Þ

The states j0̃Li, j1̃Li span an orthogonal subspace to that
spanned by the logical states and are produced when any
single-qubit phase error occurs. Using the relation

FIG. 3. Teleportation fidelities with and without error syndrome
detection. The fidelity is calculated according to F ¼ hψ jρjψi,
where jψi ¼ fj0i; j1i; jþi; j−i; j þ ii; j − iig are the ideal states
to be teleported. The dashed line denotes the F ¼ 2=3 threshold.
The error bars denote 1 standard deviation.
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Udecðαj0̃Li þ βj1̃LiÞ ¼ j1iðαj0i þ βj1iÞ; ð9Þ

we can see that the measurement outcomes of j1i on the
auxiliary qubits allow one to deduce that a phase-flip error
has occurred on any of the qubits. This constitutes an error
detecting code [5,60–62], which can be used to passively
improve the fidelity of the circuit by discarding any results
where errors have occurred [45,46,48–51].
Figure 3 shows the teleportation fidelities using the error

syndrome measurements on qubits 1,3,5,7. A measurement
of the state j1i on any of these qubits signals that at least
one phase-flip error has occurred, such that it is removed
from the data set. All results on the ancilla qubit 8 are
included. We observe that the fidelities of the telportation
improve significantly for all states, with an average of
84.60� 0.11% for the six states. This further increases the
average fidelity beyond the classical bound by over 163
standard deviations. The final teleported state for the error
syndrome improved state is tomographically reconstructed
using a maximum likelihood estimator of the density matrix
and shown in Fig. 4. We see that the states of the six input
states are very well reproduced, demonstrating that the
teleportation is being performed correctly over the six
mutually unbiased basis states.
In summary, we have performed a quantum simulation of

the teleportation of a qubit encoded as the MZM states of
the Kitaev chain. The teleportation circuit is performed
entirely using braiding operations of the MZMs, including
the quantum gates for classical correction. In our telepor-
tation circuit, we were careful to be faithful to the braiding
process of the MZMs in the sense that no gate simplifi-
cations were performed in the circuit Fig. 2(c). This

demonstrates via an equivalent spin encoding that a
nontrivial quantum circuit can be performed using a
topological quantum computing sequence using braids.
In addition, numerous demonstrations of teleportation have
been performed to date in qubit [63–70] and higher
dimensional systems [71–75], but never in combination
with quantum error correction. Purely from the perspective
of the spin formulation, our work can also be viewed as a
demonstration of an encoded qubit teleportation.
The benefit of the MZM encoding in the original fermion

model is protection against both bit- and phase-flip errors
[16]. By performing the spin mapping, the protection
against bit-flip errors is lost, as evident by examining
the states (4). However, the protection against phase-flip
errors is still present, and we explicitly demonstrated the
enhancement in fidelity of the teleportation by postselect-
ing states without detected errors. Thus, our results also
indicate the feasibility of phase error protection in
MZM-based topological quantum computing. Longer
chains are expected to enhance the phase error protection,
but will make the states more susceptible to bit-flip errors
due to a higher probability of an error occurring somewhere
on the chain. Thus, while we do not expect that the spin
encoding benefits from larger N, in the original fermion
model we expect that the logical states should have an
enhanced protection. In addition to the error detection
performed here, with the addition of a topological gap to
energetically separate the logical space from the error
space, errors could be actively suppressed, further improv-
ing the error protection.
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