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Wave-particle duality is one of the basic features of quantum mechanics, giving rise to the use of
complex numbers in describing states of quantum systems and their dynamics and interaction. Since the
inception of quantum theory, it has been debated whether complex numbers are essential or whether an
alternative consistent formulation is possible using real numbers only. Here, we attack this long-standing
problem theoretically and experimentally, using the powerful tools of quantum resource theories. We show
that, under reasonable assumptions, quantum states are easier to create and manipulate if they only have
real elements. This gives an operational meaning to the resource theory of imaginarity. We identify and
answer several important questions, which include the state-conversion problem for all qubit states and all
pure states of any dimension and the approximate imaginarity distillation for all quantum states. As an
application, we show that imaginarity plays a crucial role in state discrimination, that is, there exist real
quantum states that can be perfectly distinguished via local operations and classical communication but that
cannot be distinguished with any nonzero probability if one of the parties has no access to imaginarity. We
confirm this phenomenon experimentally with linear optics, discriminating different two-photon quantum
states by local projective measurements. Our results prove that complex numbers are an indispensable part
of quantum mechanics.
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Introduction.—Complex numbers, which originated in
mathematics, are widely used in mechanics, electrodynam-
ics, and optics, allowing for an elegant formulation of these
theories. The rise of quantum mechanics as a unified
picture of waves and particles further strengthened the
prominent role of complex numbers in physics. According
to the postulates of quantum mechanics, a state of a
quantum system is described by a wave function ΨðxÞ ¼
jΨðxÞje−iϕðxÞ with probability amplitude jΨðxÞj2 and phase
ϕðxÞ. The wave-based point of view provides an important
set of tools for the formulation and construction of quantum
physics. Therefore, it is natural to ask whether the complex
arithmetic in quantum mechanics arising from the imagi-
nary part of eiϕ is necessary to describe the fundamental
properties and dynamics of a quantum system. In other
words, can quantum physics be restated in a formalism
using real numbers only?
One approach to address this question is to use the

standard rules of quantum mechanics but to require all
states and measurement operators to have real elements

only [1–9]. The aim of this approach, then, is to find
physical effects and applications that are possible in
standard quantum mechanics but impossible in a version
restricted to real numbers [10,11]. It has been noted that this
real-vector-space quantum theory is fundamentally differ-
ent from the standard one in various aspects, e.g., it is
bilocally tomographic [3], a rebit (real qubit) can be
maximally entangled with many rebits [4,6,7], and it allows
optimal transport of information from preparation to
measurement [8].
Another reason to distinguish between complex and real

quantum states is the effort required to establish them in
experimental setups. An important example is polarization-
encoded photonic systems, where we can realize an
arbitrary rotation around the y axis by a single half-wave
plate, while for a rotation around the z axis two additional
quarter-wave plates are needed. The fact that a certain type
of transformation is easy to perform is the basic feature of
any quantum resource theory [12–14]. This justifies the
study of the “resource theory of imaginarity” [15] using the
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framework of general quantum resource theories that has
been successfully applied to investigate basic properties
and applications of quantum entanglement [16], quantum
coherence [17], and quantum thermodynamics [18,19].
The aim of this Letter is twofold. First, we provide the

resource theory of imaginarity with an operational mean-
ing, discussing the experimental role of complex and real
operations, i.e., quantum operations that do not create
imaginarity. Second, we identify and answer several
important questions within this theory. As an application,
we show that imaginarity plays a crucial role for local
quantum state discrimination when complex numbers are
allowed in the measurement. We show that there exist real
bipartite states that can be perfectly distinguished via local
operations and classical communication (LOCC) but that
cannot be distinguished with any nonzero probability via
LOCC restricted to real local measurements. In the context
of quantum tomography, a similar effect has been observed
previously in [10]. By experimentally measuring the
optimal distinguishing probability for different families
of mixed states, our results clearly demonstrate that com-
plex numbers play a distinguished role in quantum theory,
allowing for phenomena that would not be possible with
real quantum mechanics alone.
Resource theory of imaginarity.—The first step to for-

mulating any resource theory is to identify the free states of
the theory, i.e., quantum states that, within the theory under
study, can be created at no cost. Similar to the resource
theory of coherence [17,20], we specify a particular
basis fjjig, and a pure quantum state can be written as
jψi ¼ P

j cjjji with complex coefficients cj that satisfy
P

j jcjj2 ¼ 1. The natural choice for free states in the
theory of imaginarity are “real states,” i.e., quantum
states with all coefficients cj being real (up to a non-
observable overall phase) [15]. Mixed real states can be
identified as convex combinations of real pure states
ρ ¼ P

j pjjψ jihψ jj. The set of all real states will be
denoted by R. It can also be characterized as the set of
states with a real density matrix [15].
The formulation of a resource theory is completed by

defining an appropriate set of free operations corresponding
to physical transformations of quantum systems that are
easy to implement. In general, quantum operations can be
specified by a set of Kraus operators fKjg satisfying the
completeness relation

P
j K

†
jKj ¼ 1. In the case of prob-

abilistic transformations, the Kraus operators satisfy the
more general condition

P
j K

†
jKj ≤ 1. As the free oper-

ations of imaginarity theory, we identify quantum oper-
ations that admit a Kraus decomposition having only real
elements in the free basis [15]: hmjKjjni ∈ R for all j, m,
n. Such transformations are called “real operations” [15].
This definition guarantees that real operations cannot create
imaginarity, even if interpreted as a general quantum
measurement. In this case, the postmeasurement state will

be real for any real initial state, regardless of the meas-
urement outcome.
A desirable feature of a quantum resource theory is

the existence of a golden unit: a quantum state that can be
converted into any other state via free operations.
In the resource theory of imaginarity, the golden unit is
the maximally imaginary state jþ̂i¼ðj0iþij1iÞ= ffiffiffi

2
p

.
Interestingly, via real operations it is possible to convert
jþ̂i into any state of arbitrary dimension [15]. Another
maximally imaginary state is given by j−̂i ¼ ðj0i − ij1iÞ=ffiffiffi
2

p
. A detailed discussion of the main features of quantum

resource theories, including resource quantifiers and state
conversion properties under free operations, is provided in
the accompanying paper [21]. If not stated otherwise, we
consider quantum systems of arbitrary but finite dimension
in the following.
Quantum state conversion.—We will now present a

complete solution for the conversion problem via real
operations for all qubit states, characterizing when a qubit
state ρ can be converted into another qubit state σ via real
operations. To this end, recall that any single-qubit state can
be represented by a real three-dimensional Bloch vector.
Now, the transition ρ → σ is possible via real operations if
and only if

s2y ≤ r2y;
1 − s2z − s2x

s2y
≥
1 − r2z − r2x

r2y
; ð1Þ

where r and s are the Bloch vectors of the initial and the
target state, respectively. The proof of this statement is
given in [21] and relies on methods developed earlier
within the resource theory of quantum coherence [22–24].
Notably, there exist states σ that cannot be obtained from

a given state ρ via real operations. In this case, it might still
be possible to achieve the conversion probabilistically.
Defining the conjugated state jψ�i ¼ P

j c
�
j jji, we now

present the optimal conversion probability via real oper-
ations for any two pure states.
Theorem 1: The maximum probability for a pure state

transformation jψi → jϕi via real operations is given by

Pðjψi → jϕiÞ ¼ min

�
1 − jhψ�jψij
1 − jhϕ�jϕij ; 1

�

: ð2Þ

The proof of the theoremmakes use of properties of general
resource quantifiers, we refer to [21] for more details. We
note that the theorem holds true for systems of arbitrary
finite dimension. Moreover, if the target state jϕi is real, the
conversion probability is 1 for any initial state.
Approximate imaginarity distillation.—So far we have

discussed exact transformations between quantum states
via real operations, both deterministically and stochasti-
cally. We will now go one step further and consider
approximate transformations in the cases when an exact
transformation is impossible. Typically, one aims to convert
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a state ρ into the most valuable quantum state, which
in the resource theory of imaginarity is the maximally
imaginary state jþ̂i. This leads us to the “fidelity of
imaginarity,” quantifying the maximal fidelity between a
state ρ and the maximally imaginary state, achievable via
real operations Λ:

FIðρÞ ¼ max
Λ

hþ̂jΛ½ρ�jþ̂i: ð3Þ

In the following, we will provide a closed expression for
FI , establishing at the same time a close connection to the
robustness of imaginarity, defined as [15]

IRðρÞ ¼ min
τ

�

s ≥ 0∶
ρþ sτ
1þ s

∈ R
�

; ð4Þ

where the minimum is taken over all quantum states τ and
all s ≥ 0. We note that similar quantifiers have been studied
earlier in entanglement theory [25–27] and the resource
theory of coherence [28,29].
Theorem 2: For any quantum state ρ, the fidelity of

imaginarity is given as

FIðρÞ ¼
1þIRðρÞ

2
¼ 1

2
þ 1

4
kρ − ρTk1; ð5Þ

where T denotes transposition and kMk1 ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffi
M†M

p
is

the trace norm.
This theorem provides at the same time a closed formula

for the fidelity of imaginarity and the robustness of
imaginarity for systems of arbitrary finite dimension.
The proof of Theorem 2 further implies that the maximum
in Eq. (3) can be achieved with a real operation Λ having a
two-dimensional image space. Interestingly, these results
can be extended to a general class of quantum resource
theories (see Corollary 14 in [30]). The proof of Theorem 2
is presented in [21], where we also give more details on the
robustness measure and its role in general quantum
resource theories.
Applications.—We will now discuss applications of

imaginarity as a resource for discrimination of quantum
states and quantum channels. Channel discrimination can be
seen as a game, where one has access to a “black box” with
the promise that it implements a quantum channel Λj with
probability pj. The goal of the game is to guess Λj by
applying the black box to a quantum state ρ, followed by a
suitably chosen positive operator valued measure (POVM)
fMjg that satisfies

P
j Mj ¼ 1;Mj ≥ 0. The measurement

outcome j then serves as a basis for guessing that the black
box has implemented the channel Λj in the corresponding
realization of the experiment. The probability of correctly
guessing an ensemble of channels fpj;Λjg in this procedure
is given by psuccðρ;fpj;Λjg;fMjgÞ¼

P
jpjTr½MjΛjðρÞ�.

Recently, it has been shown that any quantum resource
provides an operational advantage in some channel

discrimination task [31,32]. Specifically, for the resource
theory of imaginarity, it holds that

max
fpj;Λjg;fMjg

psuccðρ; fpj;Λjg; fMjgÞ
maxσ∈Rpsuccðσ; fpj;Λjg; fMjgÞ

¼ 1þIRðρÞ:

ð6Þ

Eq. (6) implies that for any quantum state ρ that has nonreal
elements there exists a set of channels such that the optimal
guessing probability is strictly larger than for any σ ∈ R.
Another closely related task is “quantum state discrimi-

nation” [33], where one aims to distinguish between
quantum states ρj, each given with probability pj. To this
end, one performs quantum measurements described by a
POVM fMjg. The average probability for correctly guess-
ing the state is psuccðfpj; ρjg; fMjgÞ ¼

P
j pjTr½Mjρj�. In

general, one aims to find a strategy fMjg that maximizes
the success probability for a given ensemble of states and
probabilities fpj; ρjg. For a broad class of quantum
resource theories, the performance of this task can be
quantified by extending the robustness quantifier from
states to measurements [32,34,35].
Going one step further, we will now show that complex

numbers play an indispensable role in “local state dis-
crimination” [10,36]. Assume that the states to be dis-
criminated are shared by two distant parties, Alice and Bob.
It was shown in [37] that any pair of pure orthogonal states
can be perfectly distinguished via LOCC. To perfectly
distinguish the states fρABj g via LOCC, there must exist a
POVM with elements fMjg of the form Mj ¼

P
k Aj;k ⊗

Bj;k and the property TrðMjρ
AB
k Þ ¼ δjk for all j and k. If the

states fρABj g are real, we are particularly interested in
perfect discrimination with local real operations and
classical communication (LRCC) where all Aj;k; Bj;k must
be real and symmetric. Indeed, if two states are pure,
orthogonal, and real, such perfect LRCC discrimination is
possible (see [21] for more details).
For some real mixed states, instead, the situation is

radically different. Consider the states

ρAB1 ¼ 1

2
ðjϕ−ihϕ−j þ jψþihψþjÞ;

ρAB2 ¼ 1

2
ðjϕþihϕþj þ jψ−ihψ−jÞ ð7Þ

with the Bell states jϕ�i ¼ ðj00i � j11iÞ= ffiffiffi
2

p
and jψ�i ¼

ðj01i � j10iÞ= ffiffiffi
2

p
. These states can be perfectly distin-

guished via LOCC. To see this, we express the states as
follows:

ρAB1 ¼ 1

4
ð1þ σy ⊗ σyÞ;

ρAB2 ¼ 1

4
ð1 − σy ⊗ σyÞ: ð8Þ

PHYSICAL REVIEW LETTERS 126, 090401 (2021)

090401-3



Consider now the POVM defined by

M1 ¼ jþ̂ihþ̂j ⊗ jþ̂ihþ̂j þ j−̂ih−̂j ⊗ j−̂ih−̂j;
M2 ¼ jþ̂ihþ̂j ⊗ j−̂ih−̂j þ j−̂ih−̂j ⊗ jþ̂ihþ̂j: ð9Þ

This POVM can be implemented as an LOCC protocol if
Alice andBobperform localmeasurements in thefjþ̂i; j−̂ig
basis and share their measurement outcomes via a classical
channel. We verify the equality TrðMjρ

AB
k Þ ¼ δjk, implying

that this POVM perfectly discriminates the states in Eq. (7).
On the other hand, the states in Eq. (7) cannot be distin-
guished via LRCCwith any nonzero probability. To see this,
note that Tr½Sσy� ¼ 0 for any real symmetric 2 × 2matrix S.
It follows that, for any POVM element Mj ¼

P
k Aj;k ⊗

Bj;k with real symmetric matrices Aj;k, it holds

TrðMjρ
AB
1 Þ ¼ TrðMjρ

AB
2 Þ ¼ 1

4
TrðMjÞ: ð10Þ

This means that the states in Eq. (7) are completely
indistinguishable via LRCC even if we consider imperfect
state discrimination with finite error.
The states in Eq. (7) show the role of imaginarity for

quantum state discrimination in an extreme way. It is clear
from the above discussion that this effect is also observed if
only one of the parties is limited to real operations and the
other party has access to all quantum operations locally.
Nevertheless, the states can be perfectly distinguished by
LOCC if both Alice and Bob can perform general quantum
measurements locally.
These results further highlight the relevance of complex

numbers in quantum mechanics. Note that the states in
Eq. (7) have real elements in the computational basis. This
means that they are also valid states in “real quantum
theory” [1–9], which is the restriction of quantum theory to
real states and real measurements. In such a theory, two
remote parties would not be able to distinguish these states
with any nonzero probability, whereas they are perfectly
distinguishable in reality.
Experimental relevance of imaginarity.—Here, we per-

form a comparison of real operations and general quantum
operations in optical experiments, focusing on the single-
photon interferometer setup with half-wave plates (HWPs),
quarter-wave plates (QWPs) and polarizing beam splitters
as the building blocks. Under these assumptions, a real
quantum operation acting on path degree of a d dimen-
sional system can be implemented with ðd6 − d3Þ=2 unset
wave plates, whereas a general quantum operation requires
at least d6 − 1 unset wave plates for the implementation.We
assume that both operations are implemented via a unitary
dilation. For large d, this implementation allows one to
reduce the number of HWPs (QWPs) by half if we restrict
ourselves to real operations (see the accompanying article
[21] for more details). Similar results are found in imple-
menting a real n outcome generalized measurement on a

single polarization-encoded qubit [21]. Even in this case,
using real measurements instead of general measurements
reduces the number of unset wave plates by half in the limit
of large n. These results show that under assumptions
commonly applied in optical experiments, real states are
easier to create and real operations are easier to perform
compared to general states and operations. This justifies the
choice of real states (operations) as the free states (oper-
ations) of the resource theory of imaginarity [21].
Experimental local state discrimination.—As discussed

earlier, imaginarity plays an important role for quantum
state discrimination. We devised an experimental setup
for local state discrimination using two entangled
photons. The experimental setup is shown in Fig. 1.
After generating polarization-entangled photon pairs, we
prepare different mixed states for discrimination experi-
ments (light blue regions I and II in Fig. 1). Local projective
measurements are performed on each photon via the
combination of a QWP, an HWP, and a polarizing
beam splitter. From the photon detecting and coincident
system, we can experimentally determine the guessing
probability [38–40].
Our experiment consists of two parts. In the first part, we

consider the discrimination of the two states in Eq. (7).
These states can be perfectly distinguished by performing
local projective measurements in the maximally imaginary
basis fjþ̂i; j−̂ig and sharing the measurement outcomes
via a classical channel. The experimental results are shown
in Figs. 2(a) and 2(b). The experimental success probability
reads P ¼ 0.984� 0.002. To demonstrate that the states
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FIG. 1. Experimental setup for local state discrimination. The
experiments are carried out using linear optics. We prepare
entangled photon sources and perform local projective measure-
ments on each photon, identifying the successful guessing
probability by classical communications. The optical elements
are HWP, QWP, β-BaB2O4 (BBO), interference filter (IF),
adjustable aperture (AA), beam splitter (BS), mirror (M), quartz
plate (QP), and fiber coupler (FC). We refer to Ref. [41] for more
details.
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cannot be distinguished with real local measurements,
we show the experimentally measured success probabil-
ities under the σx and σz measurements, since real
measurements can be written as a combination of 1, σx,
and σz. In this case, the output is nearly a uniform
distribution. From Fig. 2(b), we extract experimentally
determined guessing probabilities under different local
Pauli measurements. We can see that imaginarity is
necessary in the measurement of both subsystems to
improve the guessing probability.
In Figs. 2(c)–2(f), we show the experimental results for

distinguishing different families of mixed states given in
the caption of Fig. 2. All dashed lines represent theoreti-
cally derived maximum guessing probabilities via LOCC;
dotted lines represent the aforementioned probabilities
under LRCC (see the caption of Fig. 2 and Ref. [41] for
more details). Note that all states considered here have only
real elements in the computational basis.
These results clearly demonstrate the indispensable role

of imaginarity in local state discrimination, even if the
states to be distinguished have real density matrices.
Discussion.—In this Letter, we investigate the resource

theory of imaginarity, studying the role of complex
numbers in quantum mechanics in an operational way.
We demonstrate the usefulness of our methods in local state
discrimination, where two remote parties aim to distinguish
states by applying local operations and classical

communication. We show theoretically and experimentally
that there exist real quantum states that can be perfectly
distinguished in this setup if imaginarity is used in the local
measurements. However, when restricted to only real
measurements, the states cannot be distinguished with
any nonzero probability. This demonstrates that complex
numbers are an essential ingredient of quantum mechanics.
The usefulness of complex numbers in quantummechan-

ics is worth an in-depth study also in the light of the recent
advances in quantum technologies. An important example
is quantum computers, which can solve certain problems of
interest significantly faster than any classical computer
[46,47]. As of today, the reason for this quantum advantage
is not completely understood, especially when it comes to
quantum computers operating on noisy states [48–52]. A
quantitative analysis of imaginarity in quantum computers
can shed new light on the quantum features required for the
quantum speedup.
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FIG. 2. Experimental results for local state discrimination. All discrimination tasks concern output states after some local free
operations, when the initial state is prepared as a Bell state. (a),(b) present the probabilities for the extreme examples in Eq. (7). (b) shows
the experimentally measured guessing probabilities under local measurements. The horizontal axes of (a) represent the measurement
results fþþ;þ−;−þ;−−g, where þ;− corresponds to the result �1 of local observable A ∈ fX; Y; Zg. (c)–(f) present results for
experimental discrimination of mixed states via local projective measurements and classical communication. The families of states are
prepared as follows: (c) jϕþihϕþj and ½ujϕþihϕþj þ ð1 − uÞjψihψ j þ jϕ−ihϕ−j�=2, where jψi is a nontrivial entangled pure state;
(d) pjϕþihϕþj þ ð1 − pÞ1=4 and ðjϕþihϕþj þ jψihψ j þ 2jϕ−ihϕ−jÞ=4; (e) ðjϕ−ihϕ−j þ jψþihψþjÞ=2 and pjϕþihϕþj þ ð1 − pÞ1=4;
(f) ðjϕ−ihϕ−j þ jψþihψþjÞ=2 and sjϕþihϕþj þ ð1 − sÞjϕ−ihϕ−j, with purity a ¼ 1–2sþ 2s2. Dashed and dotted lines represent bounds
for guessing probabilities using general projective measurements and real projective measurements, respectively. The shaded areas
represent the advantage of using complex measurements over real ones. In (d), general projective measurements do not provide any
advantage compared to real projective measurements in the range p < 0.173. See [41] for more details.
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