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Glasses, unlike their crystalline counterparts, exhibit low-frequency nonphononic excitations whose
frequencies ω follow a universal DðωÞ ∼ ω4 density of states. The process of glass formation generates
positional disorder intertwined with mechanical frustration, posing fundamental challenges in under-
standing the origins of glassy nonphononic excitations. Here we suggest that minimal complexes—
mechanically frustrated and positionally disordered local structures—embody the minimal physical
ingredients needed to generate glasslike excitations. We investigate the individual effects of mechanical
frustration and positional disorder on the vibrational spectrum of isolated minimal complexes, and
demonstrate that ensembles of marginally stable minimal complexes yield DðωÞ ∼ ω4. Furthermore,
glasslike excitations emerge by embedding a single minimal complex within a perfect lattice. Con-
sequently, minimal complexes offer a conceptual framework to understand glasslike excitations from first
principles, as well as a practical computational method for introducing them into solids.
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Introduction.—Understanding the low-frequency spec-
trum of crystalline materials allows calculations of thermal
conductance, scattering coefficients, and various other
material properties [1,2]. In contrast, the origin of glassy
nonphononic low-frequency excitations [3–5], whose cor-
responding frequencies ω follow a universal DðωÞ ∼ ω4

vibrational density of states [6–11], is not fully understood.
Understanding these excitations from first principles is of
prime importance as they govern glasses’ physical proper-
ties such as heat transport [12–14], scattering [15–23], and
plastic response [3–5,24–27].
Glasses are typically formed via rapidly quenching a

liquid [28]. During this process, self-organization leads to
positional disorder intertwined with mechanical frustration
and local variations in elastic stiffness [28,29]. These
generic properties motivated previous investigations of
the effects of preparation protocol, variations of composi-
tion, and internal stress’s amplitude on glassy excitations
[11,22,23,30–33]. Others exploited structural measures
[34–37] to probe the glass transition and irreversible
processes, both related to the emergence of glassy excita-
tions. However, the origins of these excitations remain
obscure because glass’s positional disorder and mechanical
frustration are inseparable.
Theoretical approaches capturing glassy features usually

avoid the explicit treatment of positional disorder and
mechanical frustration, either by coarse-graining procedures
(e.g., in mean-field approaches [29,38–43]), or by relying on
assumptions regarding statistical microscopic properties
(e.g., random-matrix methods [44–46]). Other approaches
[47–50] a priori assume the existence of specific localized

structures to predict DðωÞ ∼ ω4. While informative on their
own, these approaches evade discussing what minimal
elementary ingredients generate glassy excitations.
In this Letter we show how both mechanical frustration

and positional disorder generate glasslike low-frequency
excitations from first principles. We study the harmonic
behavior of ordered minimal systems—minimal complexes.
We then examine the distinct roles of mechanical
frustration and positional disorder by independently intro-
ducing them to minimal complexes. Coupling mechanical
frustration and positional disorder by approaching
mechanical instability, minimal complexes yield glasslike
excitations and DðωÞ ∼ ω4. Overall, the approach taken
here unveils the roles played by positional disorder and
mechanical frustration, offers a minimal analytical model
for understanding glasslike excitations and a glassy length
scale, and presents a practical method for introducing these
excitations into solids.
Minimal complexes.—Both mechanical frustration and

positional disorder modify the harmonic vibrational spec-
trum of a solid. To demonstrate the effect of mechanical
frustration, consider a system of N particles in đ spatial
dimensions, of total potential energyU, under force balance
∂U=∂x ¼ 0 (where x is a đN-dimensional position vector).
When the system is stable, the HessianM≡ ð∂2U=∂x∂xÞ
is positive semidefinite, and its eigenmodes ψ and corre-
sponding frequencies ω govern the system’s harmonic
vibrational spectrum via the eigenvalue equation M · ψ ¼
ω2ψ (masses taken to unity).
For simplicity, let us focus on pairwise interactions

of the form φα ≡ φðΔαÞ, with Δα ≡ ðxj − xiÞT being the

PHYSICAL REVIEW LETTERS 126, 088004 (2021)

0031-9007=21=126(8)=088004(6) 088004-1 © 2021 American Physical Society

https://orcid.org/0000-0001-5499-837X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.088004&domain=pdf&date_stamp=2021-02-25
https://doi.org/10.1103/PhysRevLett.126.088004
https://doi.org/10.1103/PhysRevLett.126.088004
https://doi.org/10.1103/PhysRevLett.126.088004
https://doi.org/10.1103/PhysRevLett.126.088004


difference vector of the αth’s bond (here xi is the position of
the ith particle), and Δα ≡ jΔαj its magnitude. The Hessian
M may be further decomposed as [11,29,38]

M ¼ HþF ; ð1Þ

where the elastic stiffnesses φ00
α ≡ ð∂2φα=∂Δα∂ΔαÞ of all

interactions contribute to H, and the internal stresses
φ0
α ≡ ð∂φα=∂ΔαÞ from all interactions contribute to

F [51].
The force configuration satisfying the force balance

condition ∂U=∂x ¼ 0 has major implications on the
resulting M and its vibrational spectrum. For stress-free
systems in which each interaction within the system
contributes zero force, φ0

α ¼ 0, F ¼ 0, and the classical
harmonic approximationM ¼ H holds [51,57]. However,
systems in which only the net force vanishes for
each particle, internal stresses exist resulting in a sizable
F—internal stresses modify the harmonic vibrational
spectrum even under force balance [11,29,38].
Let us first examine how H and F contribute to the

single-bond HessianM1 ¼ ð∂2φ1=∂x∂xÞ. In general,M1

is 2đ dimensional, containing 2đ eigenvalues λ’s and
eigenmodes ψ’s. Translational invariance yields đ
zero modes. The single bond stiffness H1 ∝ φ00

1Δ̂1Δ̂T
1

contributes a single eigenvalue λ ∝ φ00
1 and a correspond-

ing ψ along Δ̂1 [51]. The single bond F 1 ∝
ðφ0

1=Δ1ÞðI đ − Δ̂1Δ̂T
1 Þ (I đ being the đ-dimensional identity

matrix) contributes the remaining đ − 1 eigenvalues λ ∝
ðφ0

1=Δ1Þ corresponding to ψ’s orthogonal to Δ̂1 [51]. The
presence of internal stresses alters the resulting vibrational
spectrum, and may even destabilize M1 once φ0

1 < 0.
The configuration of internal stresses, if present, must

satisfy ∂U=∂x ¼ 0. What minimal system allows such a
configuration in the first place? A single particle under force
balance imposes đ constraints. Interaction with đþ 1
neighbors ensures the existence of nontrivial solutions to
these đ equations [29]. A minimal complex—a fully-con-
nected system with a minimal number of đþ 2 particles [and
ðđþ 1Þðđþ 2Þ=2 interactions]—ensures the existence of a
single internally stressed force-balanced state (also known as
a state of self stress [51,58,59]). Figure 1 shows possible
realizations of minimal complexes in đ ¼ 1, 2, and 3.
Consider the Hessian Mmc of an internally stressed

minimal complex. For simplicity, we consider a minimal
complex in đ ¼ 2 consisting of 4 particles arranged
in a perfect square of side length l, and 6 interactions
[cf. Fig. 1(b)]. We focus on đ ¼ 2 as it is the minimal
spatial dimension required for nontrivial internal stress
contributions, and choose a square geometry both because
of its symmetry, and as it may serve as a simple unit cell in a
2D lattice. First, we set all stiffnesses to a constant φ00

α ¼ κ
to highlight the role of internal stresses. Then we fix the
particles’ positions and find the single allowed configura-
tion of pairwise forces that produces zero net force on all
the particles and impose such internal stresses multiplied by
the amplitude ξ [51,58,59]. We set ξ > 0 to correspond to
short-range repulsion and long-range attraction, while
ξ < 0 corresponds to the opposite case. All forces are
generated and balanced by construction by the pairwise
interactions between the particles.

(a) (b) (c)

FIG. 1. Examples of minimal complexes in (a) đ ¼ 1, (b) 2, and
(c) 3. In (a) forces are one-dimensional, and each particle has two
interactions. Force balance is satisfied by choosing a constant
force of any magnitude. In (b), bonds are colored according to a
force-balanced internally stressed state—red bonds are repulsive,
and blue bonds are attractive (this could be reversed by a negative
multiplication scaling factor). In (c) a similar coloring scheme
is used.

FIG. 2. Visualization of the eigenmodes ψ’s and eigenvalues λ’s of Ĥ and F̂ . The three translational and rotational zero modes of Ĥ
and F̂ are shown in red, green, and blue, respectively (left). The fourfold degeneracy of the λĤ ¼ 2 shear mode band is lifted in the
presence internal stresses F̂ to a threefold degenerate band, and a single mode. The threefold degenerate band is characterized by
shearing of repulsive (red) interactions, while the single mode is obtained by shearing attractive (blue) interactions. While dilation is
associated with λĤ ¼ 4, it is an additional zero mode for F̂ as no bond is sheared.
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We normalize the minimal complex’s Hessian
M̂mc ≡Mmc=κ, and decompose it according to M̂mc ¼
Ĥmc þ ϵF̂mc, with Ĥmc ≡Hmc=κ, F̂mc ≡Fmcl=ξ,
and ϵ≡ ξ=κl capturing the importance of internal stresses
relative to elastic forces. We drop the •mc subscript for
readability, and use Ĥ, F̂ , and M̂ for the minimal
complex quantities exclusively.
As both Ĥ and F̂ are translationally and rotationally

invariant, both have three zero eigenvalues λ ¼ 0. Ĥ
captures a stress-free elastic system, its eigenmodes cor-
respond to shear and dilation vibrations. Specifically, Ĥ
has 4 shear modes of λĤ ¼ 2 and a single λĤ ¼ 4 dilation
mode. The eigenmodes of F̂ share similar spatial form, but
their associated eigenvalues λF̂ differ. As F̂ is associated
with shearing motion [51], its dilation mode becomes a
zero mode λF̂ ¼ 0. Shear vibrations split into a threefold
degenerate band of λF̂ ¼ −2, and a single mode λF̂ ¼ 2.
Both λ’s and ψ’s of Ĥ and F̂ are visualized in Fig. 2.
The resulting spectrum of M̂ consists of three zero

modes, a threefold degenerate band of λM̂ ¼ 2ð1 − ϵÞ
shear modes, a single shear mode λM̂ ¼ 2ð1þ ϵÞ, and a
dilation mode λM̂ ¼ 4. The presence of internal stresses
breaks the symmetry of shear deformation, and lifts the
degeneracy in M̂’s spectrum. In fact, M̂’s positive
semidefiniteness is ensured only when internal stresses
are small compared to the elastic forces, jϵj ≤ 1.
As mentioned above, glasses exhibit positional disorder

in addition to internal stresses. To explore the role played
by positional disorder, we introduce a random perturbation
vector A½cosðθiÞ; sinðθiÞ�T of amplitude A to the position
of each particle in the minimal complex (the 4 angles
θi ∈ ½0; 2πÞ drawn from a uniform distribution). The
dimensionless parameter δ≡ A=l captures the magnitude
of the positional disorder amplitude A relative to the side-
length l. Such positional disorder affects M̂ through both
Ĥ and F̂ .
Generically, positional disorder lifts the degeneracy in

M̂’s spectrum. However, each positional perturbation
modifies the spectrum of M̂ differently. To probe these
differences we consider ensembles of minimal complexes
characterized by ðδ; ϵÞ and extract their lowest nonzero
eigenvalue. A negative minimal eigenvalue implies at least
a single realization is unstable; otherwise all realizations
within the ðδ; ϵÞ ensemble account for stable energetic
minima.
The stability of the ðδ; ϵÞ ensembles shown in Fig. 3

reveals clear boundaries between stable and unstable
ensembles. To understand these boundaries, consider first
the ϵ < 0 regime, in which the destabilizing eigenvalue is
λM̂ ¼ 2ð1þ ϵÞ. Linear perturbation theory predicts the
lowest eigenvalue vanishes at the critical amplitude
ϵc ¼ 2δ − 1. This analytical prediction is plotted in
Fig. 3 and agrees with the numerical results.
In the case of ϵ > 0 the λM̂ ¼ 2ð1 − ϵÞ degenerate band

destabilizes M̂. We established above that ϵc ¼ 1 for

δ ¼ 0. Also, once three particles are aligned—correspond-
ing to δ ¼ 1=

ffiffiffi

8
p

—the system effectively reduces to a đ ¼
1 minimal complex embedded in đ ¼ 2, unstable under
internal stresses; beyond this point, it is unlikely the
ensemble will stabilize again. Finally, due to degeneracy
we assume non-negligible second order corrections in δ.
Altogether, we predict ϵc ¼ 8ðδ − 1=

ffiffiffi

8
p Þ2, as well as a

critical line at δ ¼ 1=
ffiffiffi

8
p

—both in agreement with our
numerical findings, as shown in Fig. 3.
Glasslike nonphononic excitations.—The two aspects

discussed so far—internal stresses and positional disorder—
are essential features of glasses [11,29,38]. The process of
glass formation intrinsically couples between positional
disorder to internal stresses—what is an analogous coupling
between these essential features in minimal complexes?
Glassy modes are easily identified near mechanical

instabilities [3–5]; we hypothesize minimal complexes’
marginally stable ensembles would be of our interest.
Inspired by the intrinsic connection between positional
disorder and internal stresses in glasses, we treat marginal
stability as an effective coupling between positional dis-
order δ and internal stresses ϵ, and sample ðδ; ϵÞ ensembles
as denoted in Fig. 3. As conventionally short-range
interactions are repulsive and long-range interactions are
attractive, we confine the discussion to the ϵ > 0 regime.
Frequencies ω≡ ffiffiffi

λ
p

of marginal ensembles indeed follow
DðωÞ ∼ ω4 as shown in Fig. 4. Moreover, Ĥ’s and F̂ ’s
contributions to the observed frequencies are similar to

FIG. 3. Stability phase diagram of M̂ as a function of the
positional disorder δ and the internal stress ϵ. Each point in the
phase diagram corresponds to the lowest non-zero eigenvalue of
105 realizations within the ðδ; ϵÞ ensemble. Blue regions signify
stable ensembles (positive semidefinite M̂’s), while white
regions indicate ðδ; ϵÞ ensembles with at least a single unstable
minimal complex (ensembles on the stability boundary exhibit
vanishingly small lowest non-zero eigenvalues). Solid and dashed
red lines correspond to theoretical predictions. The inset depicts a
representative destabilizing positional perturbation for the ϵ > 0
stability boundary. Markers correspond to the ðδ; ϵÞ ensembles
examined in Fig. 4.
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their contributions in glasses [11,51]. Coupling positional
disorder with internal stresses through mechanical margin-
ality yields a glasslike density of states.
Glasses’DðωÞ ∼ ω4 scaling corresponds to the presence of

glassy nonphononic excitations [6,11]; we expect minimal
complexes’ low frequency excitations to exhibit similar spatial
structure. To test this, we construct a stress-free lattice with a
unit cell of the same spatial structure as the minimal complex
[51] [cf. Fig. 1(b)]. We choose one unit cell and introduce to it
a positional perturbation δ and internal stresses ϵ, essentially
embedding a minimal complex within the ordered lattice. We
then extract the lowest nonzero eigenmode ψ from the
full system’s M. An example of ψ is shown in Fig. 5.
Embedding a minimal complex within an ordered, stress-free
medium results in spatial features similar to those of glassy
modes [3–5]. The observed long-range quadrupolar fields
emerge even in an ordered medium, conveying their inde-
pendence from microscopic details [60,61].
Discussion.—In this Letter we demonstrated how

coupling between positional disorder and internal stresses
in minimal complexes generates two glassy characteristics:
a DðωÞ ∼ ω4 glassy density of states [6–11] and glasslike
nonphononic excitations [3–5]. Utilizing the simplicity of
đ ¼ 2 minimal complexes, we analytically predicted the
effects of internal stresses on the vibrational spectrum, and
derived stability conditions in the presence of positional
disorder. We then coupled positional disorder and internal
stresses via mechanical marginality—analogous to the
self-organization dynamics during typical quenching
procedures—to generate glasslike nonphononic excitations
and a glassy density of states. Overall, minimal complexes—
glasses’ “spherical cows”—provide transparent insights into
the inner workings of glassy vibrational spectrum.

Above, we exposed the role of internal stresses in glassy
physics. While internal stresses in real glasses do not
localize, but rather induce long-range correlations, we
demonstrated above how their presence yields glasslike
excitations. Future analysis of the stiffness of the different
ensembles shown in Fig. 4 could potentially lead to
different length scales, relating disorder and internal stress
to macroscopic material characteristics. Extending the
analysis beyond pairwise interactions, to higher spatial
dimensions, and to several elastically interacting minimal
complexes, may reveal model-specific glassy character-
istics and possibly shed light on universal glassy character-
istics. Finally, while other mechanisms of generating glassy
modes exist [33], the mechanism described above is of
fundamental importance and is universal across several
different classes of glassy materials, from foams to metallic
glasses.
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FIG. 4. Density of statesDðωÞ of four different ðδ; ϵÞ ensembles
[using 107 realizations for each ðδ; ϵÞ combination], as denoted in
Fig. 3. Marginal ensembles’ low-frequency spectrum (green-
yellow triangles) follow a power-law distribution close to the
glassy DðωÞ ∼ ω4 [6–11]. The nonmarginal ensemble (orange
square) does not exhibit such power-law scaling, emphasizing the
importance of mechanical marginality as a coupling mechanism.

(a)

(c)
(d)

(b)

FIG. 5. (a) An example of a glassy mode from an inverse-
power-law glass (N ¼ 802, details in Ref. [62]). (b) An example
of the emerging glasslike mode ψ from a minimal complex
embedded within a lattice (N ¼ 802), obtained with δ ¼ 0.1 and
ϵ ¼ 1.44 (enlarging the system increases ϵc). The obtained
quadrupolar structure is reminiscent of the one observed in
(a). (c) Decay of the magnitude jψj≡ ffiffiffiffiffiffiffiffiffiffiffi

ψ · ψ
p

, as a function
of the distance r away from the core, scaling as r−1, similar to
glassy modes [8,62]. (d) The first 10 eigenvalues of M of the
system. The mode presented in (b) is marked in blue, shown to
exist below the first phononic band.
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