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Liquids equilibrated below an onset condition share similar inherent states, while those above that onset
have inherent states that markedly differ. Although this type of materials memory was first reported in
simulations over 20 years ago, its physical origin remains controversial. Its absence from mean-field
descriptions, in particular, has long cast doubt on its thermodynamic relevance. Motivated by a recent
theoretical proposal, we reassess the onset phenomenology in simulations using a fast hard sphere jamming
algorithm and find it to be both thermodynamically and dimensionally robust. Remarkably, we also
uncover a second type of memory associated with a Gardner-like regime of the jamming algorithm.
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The state of a material is nominally the product of its
history, echoing both states and processes previously
encountered. Yet equilibrium states are memoryless.
Only certain nonequilibrium processes allow information
to be stored, retained, and summoned back. Given the rich
out-of-equilibrium physics of glass formers, these materials
exhibit a rich variety of memory types, and thus broadly
inform our understanding of the phenomenon. Spin glass
models, in particular, form the theoretical basis for both
machine and biological learning [1–3]. Their structural
counterparts [4] form an even richer array of memory types
via out-of-equilibrium processes as varied as shearing
[5–7], heating cycles [8], and aging [9].
Inherent state memory, which relates an equilibrium state

to its nearest energy minima or jammed configuration
through a fast out-of-equilibrium quench [8,10–12], is one
of the simplest memory types in glasses. Which macro-
scopic properties of the original equilibrium state can an
inherent structure recall? In pure p-spin models, which
commonly inform the mean-field description of glasses
[13], the answer is straightforward. Initial systems taken
above the dynamical (or mode-coupling) transition temper-
ature Td are quenched to inherent states indistinguishable
from one another [14]. In other words, no information
about the original liquid persists, other than that it was a
liquid. This memorylessness has long been argued to be a
general feature of glass formers, but numerical simulations
of (Kob-Andersen binary) Lennard-Jones liquids [15–18],
model polymers [19], and soft spheres [20–23] do not
concur. In these systems, all states prepared above an onset
Ton > Td share a same inherent state energy, but inherent
state energies of liquids prepared below Ton differ. The
resulting amorphous solid thus seemingly encodes some
features of the original liquid.
Attempts to explain away this discrepancy abound. Finite-

size [24,25] or finite-dimensional corrections [25,26] have

been invoked, measurement protocols have been questioned
[20,23], as has the validity of the analogy between spins and
particles [25]. The solution of the glass problem in the high-
dimensional, d → ∞ limit [4], however, has revealed that
themean-field analogy between spin and structural glasses is
quite strong, and some features of the glass phenomenology
are remarkably robust to dimensional changes [13]. A novel
proposal for resolving this discrepancy recently emerged
from the work of Folena et al. [27,28], who realized that
mixedp-spinmodels generically present an onset, and hence
that pure p-spin models might be exceptional rather than
typical (see also Ref. [29]).
This advance, however, does not address many of the

remaining concerns, including algorithmic and finite-size
considerations. In this Letter, we use advanced computer
simulations to eliminate these hypotheses and strongly
evince the existence of a distinct landscape onset in liquids,
and therefore fully resolve the crisis. We further uncover
that the preparation algorithm itself bears signatures of an
out-of-equilibrium transition, which strongly resembles the
onset of a Gardner phase. We assess the properties of this
transition, its relation to the jamming algorithm, and how it
defines a memory that distinguishes between all initial
liquid conditions, even before the onset is reached.
Model and simulation method.—We consider the inher-

ent states of hard sphere glass formers obtained by rapidly
compressing (crunching) an equilibrated liquid of N
particles at volume fraction ϕeq to its nearest jamming
point [30]. Existing crunching algorithms either violate the
hard sphere constraint [34–36], allow for significant equili-
bration [23,37], or scale poorly with system size [38–41].
In order to avoid these pitfalls, we modify a recent
algorithm by Arceri and Corwin [44] and propose the
iterative scheme depicted schematically in Fig. 1(a). Using
the minimum scaled gap, h ¼ minijðhijÞ ¼ minij½dij=ðri þ
rjÞ� between particles i and j of radii ri and rj a distance dij

PHYSICAL REVIEW LETTERS 126, 088001 (2021)

0031-9007=21=126(8)=088001(6) 088001-1 © 2021 American Physical Society

https://orcid.org/0000-0001-7174-0821
https://orcid.org/0000-0001-8950-3410
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.088001&domain=pdf&date_stamp=2021-02-22
https://doi.org/10.1103/PhysRevLett.126.088001
https://doi.org/10.1103/PhysRevLett.126.088001
https://doi.org/10.1103/PhysRevLett.126.088001
https://doi.org/10.1103/PhysRevLett.126.088001


apart as reference, the nth step involves first an inflation
and then a repulsion substep. The former entails expanding
particles uniformly, thus creating a new minimum gap,
h0n ¼ θhn, and the latter uses the FIRE algorithm [45] to
minimize the effective thermal potential for hard spheres
near jamming [46,47], until hnþ1 ¼ hn [30]. The expansion
factor, θ < 1, ensures that the hard sphere constraint is
never violated. Although the minimal scaled gap stays
constant from one step to the next, interparticle distances
steadily decrease, and hence the algorithm converges at
jamming. Interestingly, a marked algorithmic slowdown of
the FIRE minimization arises well before jamming is
reached. We thus cap the number of steps of this mini-
mization to a small multiple of the degrees of freedom,
nFIRE ¼ τNd, to prevent a full minimization–and thus
unwanted thermalization–as the crunching proceeds. The
parameters θ and τ are optimized to achieve the lowest
jamming density while reliably rigidifying the structure,
thus ensuring that equilibration is maximally suppressed.
We here set θ ¼ 0.9 and τ ¼ 2 which are near optimal for
d ¼ 3 and appear to depend only weakly on dimension
[30]. As a result, a low-density fluid crunched this way best
approximates the maximally random jammed state [48],
and does so fairly efficiently [30].
Onset memory.—The first quantity of interest is the

density of jammed states ϕJ0ðNÞ, obtained from low-
density liquids, and its scaling with system size N upon
approaching the thermodynamic N → ∞ limit. Because of
the critical nature of jamming, we expect

ϕJ0 − ϕJ0ðNÞ ∼ N−1=νd; ð1Þ

with correlation length exponent ν. Soft spheres studies have
found ν ≈ 0.7 [20,34,49], which is inconsistent with ν ≈ 1
obtained from direct measurements of the correlation length
at jamming [50]. We here robustly find ν ≈ 1 in all d, with
ν ¼ 1.01� 0.04, 0.99� 0.06, 1.01� 0.10, and 1.0� 0.3 in

d ¼ 3, 4, 5, and 6, respectively, thus resolving the discrep-
ancy. Although different exponents can in principle be
attributed to model and algorithmic differences [50], the
scaling difference between soft and hard spheres might
also originate from the fact that minimization of the former,
unlike crunching of the latter, allows for weak barriers to be
crossed. In support of this hypothesis, we note that our
thermodynamic extrapolations for ϕJ0 are close to but
systematically smaller than those for soft spheres for all
dimensions considered [30], including the careful estimate
of Ref. [49]. In addition, the lack of dimensional dependence
of this particular critical exponent for a specific model and
algorithm gives further credence to du ¼ 2 being the lower
critical dimension for jamming [51–53].
Figure 1(c) shows a clear dependence of the inherent

state density on the original equilibrium liquid condition,
such that for ϕeq ≲ ϕon, ϕJ is constant, and for ϕeq ≳ ϕon,
ϕJ increases with ϕeq. The change from one regime to the
other, however, does not sharpen as system size increases,
and thus remains a crossover in the thermodynamic limit.
To quantify this feature, we use the empirical softmax
form [54],

ϕJðϕeqÞ ¼ ϕJ0 þ ab lnð1þ eðϕeq−ϕcoÞ=bÞ; ð2Þ

where ϕcoðNÞ marks the crossover point between the low-
density and high-density linear regimes, a ¼ ðdϕJ=dϕeqÞ
for ϕeq ≫ ϕco, and bðNÞ characterizes the width of the
crossover region. This form nicely recapitulates our obser-
vations, but we note that ϕco occurs well above the point at
which ϕJ deviates from ϕJ0, which traditionally defines
the onset. Without loss of generality, we thus define
ϕon ¼ 0.9ϕco. The result scales as ϕon ∼ N−1=d [Fig. 1(b)].
Because of the limited density range between ϕco and ϕd,
around which standard computations become particularly
onerous for monodisperse systems, the fitting parameters a
and b cannot be independently determined at fixed N.

(a) (b) (c)

FIG. 1. (a) Schematic of the two-substep iterative jamming algorithm. (i) Inflation: particles (black disks) separated by minimum gap
hn expand uniformly (red disks) until h0n. (ii) Repulsion: an effective free energy is minimized until the minimum gap reaches hnþ1 ¼ hn.
The cycle is repeated until density converges at jamming. (b) The onset is clearly visible in d ¼ 3 for all system sizes considered. Lines
are fits to the phenomenological crossover form, Eq. (2). The thermodynamic N → ∞ limit of the fit parameters (black line) shows that
the onset appears well before the dynamical (mode-coupling) crossover (dashed black line). (c) Finite-size scaling of the jamming
transition ϕJ0 below the onset (top), and finite-size scaling of the onset (below). Lines are fits to Eq. (1) and curves are vertically oset by
a factor of d2 for visual clarity.
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Imposing that a single a should fit allN, however, suffices to
obtain a robust extrapolation of Eq. (2) to the thermodynamic
limit [30].
In order to compare the dimensional trend quantitatively,

we consider the fractional deviation from ϕJ0 with the
normalized density growth ϕeq=ϕco. The thermodynamic
onset results then collapse onto a master curve (Fig. 2),
strongly suggesting that the onset persists as a crossover as
d → ∞. This scaling also shows that ϕco and thus ϕon are
numerically distinct from the (avoided) dynamical transi-
tion ϕd as indicated by the steady increase of ϕd on this
scale. Hence, independently of the proposed scaling, our
results validate earlier numerical studies and are in sharp
contrast with those of Ref. [14] for pure p-spin models. The
inset of Fig. 2 suggests that upon considering the mean-
field, d → ∞, limit the onset remains roughly constant,
while the (avoided) dynamical transition shifts markedly as
d increases. Interestingly, this same qualitative behavior
has been observed for another onset, that of non-Fickian
diffusion, ϕnf [55].
These various results also inform us about the role played

by liquid structure. While the (avoided) dynamical tran-
sition is strongly affected by that structure [55,56], the
onset is not. As d increases, structure markedly simplifies
[57,58], yet the onset persists. Local structure therefore at
most modulates the phenomenon [22]. This distinction
suggests that separate underlying (landscape) mechanisms
likely control these different features. Note also that

although it is not immediately apparent why ϕon and ϕnf
should scale similarly, the robustness of our results sug-
gests that a complete out-of-equilibrium dynamical theory
should account for their (near) coincidence.
Algorithmic memory.—Surprisingly, a second form of

memory develops before jamming is reached. As a liquid is
initially crunched, interparticle gaps first grow more regu-
lar, such that hhi=hmin ∼ 1 [Fig. 3(a)]. Because of the
disordered, and thus frustrated, nature of the jammed state,
however, the repulsion substep becomes increasingly com-
putationally arduous, as illustrated by the rapid growth in
the number of minimization loops necessary to achieve
hnþ1 ¼ hn [Fig. 3(b)]. Gap regularization then also goes
into reverse. Remarkably, the two phenomena coincide at

FIG. 2. Infinite-system size onset curves for different dimen-
sions can be collapsed, suggesting that the inherent structure
onset exists in both the thermodynamic and the infinite-dimen-
sional limits. Shaded regions give the standard error of Eq. (2)
with 95% confidence intervals on parameters, and dashed lines
denote ϕd from Ref. [55]. The steady increase of ϕd with
dimension on this scale shows that ϕco < ϕd. The collapse
further supports the identification ϕon ∼ 0.9ϕco. Inset: Scaling
of ϕJ0 and ϕon with d, compared with those for the avoided
dynamical transition ϕd and the onset of non-Fickian diffusion
ϕnf from Ref. [55] reveals that both ϕnf and ϕon exhibit a trivial
mean-field-like dimensional scaling down to physical dimen-
sions, unlike ϕd and ϕJ0.

(a)

(d)

(b)

(c)

FIG. 3. The onset of the algorithmic slowdown at ϕG is
simultaneously characterized by three observables, which ro-
bustly identify a change in the crunching process. The results
shown here for d ¼ 4 with ϕeq ¼ 0.2 are typical of other d and
ϕeq. (a) At ϕG, the distribution of gaps narrows significantly, such
that the minimum gap most closely approaches the average gap.
(b) The number of minimization loops necessary to complete the
repulsion substep of the jamming algorithm grows precipitously,
and is manually cut off at τ ¼ 2. (c) The correlation between
contact networks ci for an unperturbed system at jamming and cj
for a replica perturbed at ϕbreak shows that systems perturbed
before ϕG (gray zone) end up with markedly different contact
networks compared to systems perturbed beyond ϕG (white
zone). Increasing system size makes the effect more prominent
and shifts the process to higher densities but nonetheless remain
distinct from ϕJ [30]. (d) Taken together, these observations
suggest that saddles start to dominate the landscape of the crunch
algorithm around ϕG, thus resulting in sluggish dynamics and a
large contact network response to small perturbations in particle
positions. In other words, a slightly perturbed system (i) jams as
(iii), whereas the original system jams as (ii). This series of
observations for an out-of-equilibrium algorithm is reminiscent
of the Gardner-like behavior of quasistatic state followings in
ultrastable glasses [59].
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some ϕG. This putative algorithmic onset can be further
characterized by considering the outcome of perturbing a
state along the jamming algorithm. Taking exact replicas at
ϕbreak and applying a single Metropolis Monte Carlo sweep
before crunching anew gives rise to force contacts at
jamming ci that can vary. Comparing these contact net-
works highlights structural differences. The quantity
1 − ðci ∩ cjÞ=ðci ∪ cjÞ, in particular, vanishes if the pack-
ings are identical and unity if they share no contacts.
Figure 3(c) indicates that applying a perturbation before ϕG
results in markedly different jammed states, whereas
perturbations made after ϕG result in increasingly small
deviations. The spread in jamming density also correspond-
ingly narrows [30].
Taken together these observations suggest that saddles

start to dominate the optimization landscape around ϕG,
forcing the selection of a nearby sub-basin and thus of a
contact network at jamming [Fig. 3(d)]. A transition which
sharpened with system size above ϕG would imply that all
replicas perturbed after ϕG converge on the same contact
network. That it does not suggests instead a rich, multi-
layered landscape structure reminiscent of an equilibrium
Gardner regime, for which mean-field theory predicts a
fractal hierarchy of sub-basins [61].
The evolution of ϕG upon increasing ϕeq is akin to that of

ϕJ (Fig. 4), but with an initial linear growth instead of a
density-independent regime [30]. To estimate if both this
linear scaling and ϕG persist with increasing system size
and dimension, we fit the results to a modified form of the
softmax potential,

ϕGðϕeqÞ ¼ ϕG0 þ Γðϕeq − ϕcoÞ
þ ða − ΓÞb lnð1þ eðϕeq−ϕcoÞ=bÞ; ð3Þ

where a, b, and ϕco are taken from fits to Eq. (3), and
Γ ¼ ðdϕG=dϕeqÞj0 is the slope of the linear regime.
Figure 4 shows that Γ tends to a constant as N → ∞,
and that this constant increases as d increases [30]. Hence,

although systems prepared at different ϕð1Þ
eq < ϕð2Þ

eq < ϕon

both jam at a density ϕJ0, ϕð1Þ
eq encounters a saddle-

dominated regime at smaller densities than ϕð2Þ
eq . In other

words, while the jammed state may not recall the liquid
density used to prepare it, its crunching certainly notices.
The identification of ϕG, its similarity to a Gardner

transition, and its echo of the onset provide guidance for
solving out-of-equilibrium dynamical theories [29,62,63].
Indeed, while quasiequilibrium calculations find that a
Gardner transition is a necessary step toward jamming
for hard sphere liquids equilibrated beyond φd [59,64], our
results suggest that an equivalent out-of-equilibrium phe-
nomenon should be uncovered in a mean-field description.
If true, this would resolve the paradoxical observation that
jamming criticality is obtained in the experimentally
relevant regime [34,52,65,66], with ϕ ≪ ϕon, even in the
absence of quasiequilibrium Gardner physics.
Conclusion.—By devising an efficient crunching algo-

rithm that does not violate the hard sphere condition, we
have determined that inherent state memory persists in the
thermodynamic and high-dimensional limits. Such memory
thus ought to exist in mean-field descriptions. We have
further identified a Gardner-like point in the strongly out-
of-equilibrium behavior of our crunching algorithm. This
quantity itself varies across ϕeq, and thus encodes a second
type of memory of the original liquid, even at densities well
below the inherent structure onset. Although the value of
ϕG is likely strongly algorithm dependent, we expect all
such procedures to encounter a comparable slowdown or
instability. Revisiting such algorithms might be particularly
instructive, and could offer insight into a broader class of
problems, particularly within generalized learning algo-
rithms, for which interest in Gardner physics has recently
grown [67]. If the association between Gardner physics and
strongly out-of-equilibrium jamming is confirmed, then
experimental validations of the Gardner physics should
then also be well within reach.

Data relevant to this work have been archived and can be
accessed at the Duke Digital Repository [68].
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FIG. 4. (a) The algorithmic ϕG in d ¼ 3, identified as in Fig. 3,
shifts with system size. Inset: The low-density slope of ϕG tends
to a finite value as N increases in all dimensions (dashed lines).
Because the density dependence of ϕ < ϕon seemingly persists in
the thermodynamic limit, memory of the initial state appears
upon crunching.
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