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The dynamical description of the radiative decay of an electronically excited state in realistic many-
particle systems is an unresolved challenge. In the present investigation electromagnetic radiation of the
charge density is approximated as the power dissipated by a classical dipole, to cast the emission in closed
form as a unitary single-electron theory. This results in a formalism of unprecedented efficiency, critical for
ab initio modeling, which exhibits at the same time remarkable properties: it quantitatively predicts decay
rates, natural broadening, and absorption intensities. Exquisitely accurate excitation lifetimes are obtained
from time-dependent DFT simulations for C2þ, Bþ, and Be, of 0.565, 0.831, and 1.97 ns, respectively, in
accord with experimental values of 0.57� 0.02, 0.86� 0.07, and 1.77–2.5 ns. Hence, the present
development expands the frontiers of quantum dynamics, bringing within reach first-principles simulations
of a wealth of photophysical phenomena, from fluorescence to time-resolved spectroscopies.
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Introduction.—Time-dependent electronic structure sim-
ulations are currently applied to fundamental phenomena at
the nanoscale, from spectroscopy [1–4] and photochemis-
try [5–8] to quantum conductance [9–13] and energy
transfer in molecules and materials [2,14–17]. Despite
the insight that these simulations provide, they lack an
important ingredient: the radiative energy dissipation for
any charge density evolving in time. This missing piece will
affect the electron dynamics in accordance with the
magnitude and rate of the density fluctuations. Without
it, the energy absorbed during the excitation of a molecule
at zero temperature will remain in the system in the form of
undamped dipole oscillations, indefinitely in time [18],
which is unphysical.
Different schemes have been proposed to account for the

radiative decay or spontaneous emission in electron dynam-
ics. Treatments rooted in quantum electrodynamics have
been devised to propagate jointly the electronic density
and the quantized electromagnetic field [19–23]. Such
approaches are important in situations with strong pho-
ton-electron coupling as occurs under intense laser fields,
or the interaction of light with molecules or quantum dots
in optical cavities [24,25]. However, the high dimension-
ality of the Hilbert space containing the photon modes
demands a truncation or simplification of the electromag-
netic quantum field for numerical tractability. A recent
development is the application of the exact factorization
approach to light-matter interaction [26–28].

An alternative route to model light-matter coupling is to
describe the electrons quantum mechanically, and the
radiation field in terms of classical Maxwell equations.
The Maxwell-Bloch equations, and their generalization the
Maxwell-Liouville equations [29–33], or the Ehrenfest
method [34], illustrate this semiclassical treatment. In this
framework the classical electric and magnetic fields evolve
self-consistently with the electronic density matrix. Most
implementations of these methods have been limited to just
a few—often just two—level systems. An overview and
comparative analysis of these approaches have been
recently contributed by Nitzan, Subotnik, and co-authors
[34–36]. In particular, these researchers have proposed a
correction to Ehrenfest dynamics that, by construction,
reproduces spontaneous emission according to the radiative
decay rate deduced from Fermi’s golden rule (FGR) [37].
Strategies that do not fit exactly in these groups have

been explored very recently [38,39]. Furthermore, we draw
attention to Rashkovskiy’s work on the nonlinear
Schrödinger equation, where thermal radiation and sponta-
neous emission are described without energy quantization
in a classical field framework [40,41].
In the present study, starting from a mixed quantum-

classical Lagrangian and a dipolar approximation, we
formulate an equation of motion that describes radiative
dissipation in electronic systems without empirical or fitted
parameters. Despite its simplicity, this formalism quanti-
tatively captures much of the physics of radiation emission
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and absorption, including the rates of exponential decay,
the natural broadening, and the relative intensities of
absorption bands. Transparent and inexpensive, this devel-
opment introduces an alternative approach of unprec-
edented accuracy and tractability that overcomes the
limitations of current methods, realizing a goal that
appeared remote: inclusion of the light-matter interaction
in first-principles time-dependent simulations of many-
electron systems. Here we illustrate its strength, through
the calculation of excited state lifetimes in atomic species
using time-dependent density functional theory (TDDFT)
in real time. The accuracy obtained for this property, whose
realistic estimation is a theoretical challenge, demonstrates
the predictive power of the formalism.
Formulation.—For a set of electrons with mean-field

interactions, described by the wave functions fjϕjig, with a
Hamiltonian Ĥ ¼ −ℏ2∇2=2mþ V̂e (V̂e is the potential
energy operator) and fixed nuclei, the Lagrangian assumes
the form

L ¼ iℏ
X

j

hϕjj _ϕji − Ee ð1Þ

where Ee is the electronic energy. In the presence of forces
not arising from a potential, as in the case of friction in
viscous media, the Lagrange equations with generalized
coordinates jϕi and j _ϕi read

d
dt

� ∂L
∂j _ϕji

�
−

∂L
∂jϕni

þ ∂F
∂j _ϕni

¼ 0 ð2Þ

where F is Rayleigh’s dissipation function [42,43]. In
classical mechanics it expresses the rate of energy dis-
sipation due to friction. To introduce the energy lost by the
electrons in the form of electromagnetic radiation, F can be
set equal to one half the radiation power PradðtÞ, which in
turn can be written for an arbitrary charge distribution in
terms of the time derivative of the dipole moment μ [44]:

Prad ≅
μ0
6πc

½μ̈ðtÞ�2 ¼ 2F; ð3Þ

where c and μ0 are the speed of light and the magnetic
permeability. Then the dissipative contribution is

∂F
∂j _ϕni

¼ 1

2

∂Prad

∂j _ϕni
¼ μ0

6πc
μ̈ ·

∂μ̈
∂j _ϕni

: ð4Þ

The dipole for the electronic system and its derivative are
expressed as

μðtÞ ¼
X

j

hϕjjμ̂jϕji; ð5Þ

∂μ
∂t ¼

X

j

h _ϕjjμ̂jϕji þ
X

j

hϕjjμ̂j _ϕji ð6Þ

where μ̂ ¼ ex̂ is the dipole operator, with e the electron
charge and x̂ the position operator (extension to 3D is
discussed in the Supplemental Material [45]). To develop
this expression further, we rewrite the time derivative of the
wave functions in terms of a Schrödinger equation of the
form

j _ϕi ¼ −
i
ℏ
H̃jϕi ð7Þ

with H̃ a time-dependent Hamiltonian that incorporates
radiative emission—and which remains unknown for now.
This leads to

∂μ
∂t ¼

X

j

i
ℏ
hϕjj½H̃; μ̂�jϕji; ð8Þ

∂2μ

∂t2 ¼ i
ℏ

X

j

h _ϕjj½H̃; μ̂�jϕji þ hϕjj½H̃; μ̂�j _ϕji

þ hϕjj½ _̃H; μ̂�jϕji; ð9Þ

and therefore the dissipative contribution becomes

∂F
∂j _ϕni

¼ i
ℏ

μ0
6πc

μ̈ ·
∂

∂j _ϕni

�X

j

hϕjj½H̃; μ̂�j _ϕji
�
: ð10Þ

Collecting this derivative together with the other terms in
Eq. (2), taking the Hermitian conjugate, and equating to
zero, for the evolution of the wave functions we obtain

j _ϕni ¼ −
i
ℏ
Ĥjϕni −

μ0
6πcℏ2

μ̈ · ½μ̂; H̃�jϕni: ð11Þ

Now, for Eqs. (7) and (11) to be consistent, the following
relation should hold:

H̃ ¼ Ĥ þ μ0
i6πcℏ

μ̈ · ½μ̂; H̃�; ð12Þ

or

H̃ ¼ Ĥþ μ0
i6πcℏ

μ̈ · ½μ̂; Ĥ� þ
�

μ0
i6πcℏ

μ̈

�
2

· ½μ̂; ½μ̂; Ĥ�� þ � � � :

ð13Þ

Terms in this series scale as powers of the fine-structure
constant α ¼ μ0e2c=4πℏ, where c is the speed of light.
Considering α as a small parameter, we truncate it after the
second term [53], whereupon the effective Liouville equa-
tion for the electronic density matrix becomes

ℏ
∂ρ̂
∂t ¼ −i½Ĥ; ρ̂� − A

ℏ
½½μ̂; Ĥ�; ρ̂� ð14Þ
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with A ¼ ðμ0=6πcÞμ̈. This is our fundamental equation of
motion.
Validation.—To assess the properties of Eq. (14), sim-

ulations of the evolution of the density matrix in time were
performed, employing a nearest neighbour tight-binding
(TB) model. Details of the Hamiltonian and the time-
integration algorithm are provided in the Supplemental
Material. This model satisfies the main assumptions under-
lying Fermi’s golden rule, which provides a framework to
validate the outcome of the quantum simulations. Results
for a two level system are presented in Fig. 1. The electron
density is allowed to evolve starting from an excited state
and suppressing the dissipation term during the first steps.
The dissipation is turned on at ∼20 fs, causing a decrease
of the total—or electronic—energy that, after an initial lag,
exponentially decays to the ground state level. Panel
(a) shows the overshooting of the dipole moment oscil-
lations coinciding with the deexcitation: this is the classical
fingerprint of photon emission. As the system relaxes to the
ground state the dipole fluctuations are quenched and
eventually vanish.

Under Eq. (14), a stationary solution will remain at rest,
since a constant dipole implies μ̈ ¼ 0, which suppresses the
dissipative term, consistent with the physics behind the
model. In the present example the departing state is an
excited configuration (exc) where the highest energy orbital
is replaced by a coherent mixture of the HOMO and LUMO
of the ground state (gs),

jϕexc
n i ¼ cos

�
θπ

2

�
jϕgs

n i þ sin

�
θπ

2

�
jϕgs

nþ1i ð15Þ

with n equal to the number of filled orbitals. In the spinless
system explored in Fig. 1, where n ¼ 1 and θ ¼ 0.96, the
initial state is very close to the first excited eigenstate. The
low amplitude fluctuations of the dipole moment visible at
the start in Fig. 1(a) result from the propagation of this
nonstationary state.
Panel (b) presents the radiated power in red, together

with the sum of the electronic and dissipated energies in
green, where the latter was computed as the time-integral of
the emitted power. In the dissipative dynamics this sum is a
conserved quantity, evincing the consistency of the model.
This follows from the energy balance

dhĤi
dt

¼ 1

iℏ
h½Ĥ;H̃�i ¼−

A
ℏ2

h½Ĥ; ½μ̂;H̃��i≈−
μ0
6πc

μ̈2; ð16Þ

where we have expanded μ̈ to first order in A. This outcome
for dhĤi=dt is the radiation rate according to the Larmor
formula given in Eq. (3).
For a two level Hamiltonian with eigenstates jai and jbi,

and eigenvalues Ea and Eb ¼ Ea þ ℏωba, it is possible to
show that the relaxation is determined by a rate Γ ¼
ð4α=3c2Þω3

bajhajx̂jbij2 as predicted by FGR for sponta-
neous emission (see Supplemental Material). Simulations
confirm that also in many-electron molecules the occupa-
tions evolve in quantitative agreement with spontaneous
emission. Comparison with the occupations deduced from
FGR for systems of different sizes and interactions shows
that the tails of the simulated curves closely reproduce the
theoretical decay rates, regardless of the departing state;
e.g., Γsim ¼ 7.39 × 10−4 fs−1 vs ΓFGR ¼ 7.42 × 10−4 fs−1

for a ten atom molecule (see Supplemental Material).
In Fig. 2 we present results for the deexcitation of a four

atom, one electron system, initially at the highest energy
state generated from a linear combination of the third
and fourth eigenfunctions, jϕexc

n i ¼ cos ðθπ=2Þjϕgs
j i þ

sin ðθπ=2Þjϕgs
k i with n ¼ k ¼ 4, j ¼ 3, and θ ¼ 0.96.

We see a cascade where excited states are sequentially
populated, one at a time, consistent with the symmetry
allowed transitions. The system approaches an eigenstate
hovering over it before relaxing to the next lower level,
eventually reaching the ground state. Notwithstanding how
close the wave function comes to these stationary solutions,
which suppress the commutator of Ĥ and ρ̂, the dipole

FIG. 1. (a) Electronic energy (black) and dipole moment (blue)
as a function of time for a two atom molecule simulated with a TB
model and Eq. (14). The dynamics was started from an excited
state in the absence of dissipation (see text), which is turned on at
∼20 fs, at the point indicated by the orange arrow. The red dashed
line marks the ground state level. (b) The electronic energy
(black) is shown for the same system along with the radiated
power (red) calculated from the Larmor formula. The green line
depicts the temporal integral of the radiated power plus the
electronic energy.
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fluctuations drive the dynamics forward. The dipole oscil-
lations are present throughout the process, increasing
during the transit from one eigenstate to the next, fading
completely after landing in the ground state.
Figure 2(b) depicts the power spectrum computed from

the Fourier transform of the dipole moment. The two sharp
peaks reflect the three allowed transitions, of which 4 → 3
and 2 → 1 are degenerate. Two outcomes stand out: (i) The
ratio between the heights of the two peaks, equal to 3.38,
compares well with the ratio based on spontaneous emis-
sion, of 3.56. In the Supplemental Material it is shown that
similar agreement is found for oscillator strengths in the
absorption spectra produced through monochromatic illu-
mination or excitation with a pulse of white light. (ii) The
computed line shapes reproduce the Lorentzians character-
istic of natural broadening. The blue curves in the insets of
Fig. 2(b) represent the expected profiles according to
spontaneous emission.

Excited state lifetimes in atomic species.—The accurate
determination of radiative decay rates of electronic exci-
tations in atoms and ions, of primary relevance in atomic
physics and spectroscopy and fundamental assets in astro-
physics, represents a major challenge for both experiment
and theory. The theoretical side involves highly demanding
schemes such as multiconfiguration Dirac-Hartree-Fock
theory or multiconfiguration Hartree-Fock theory, in the
latter case followed by the Breit-Pauli treatment [54].
Hence, the assessment of fluorescence lifetimes (τ) of
atomic species entails a stringent test of our development.
To this end, Eq. (14) was implemented in a real time
TDDFT code developed in our group based on Gaussian
functions and pseudopotentials [55–57]. Details are
given in the Supplemental Material. With this approach
the dissipative quantum dynamics of a many-electron
system can be evolved from first principles. An obstacle
to simulate fluorescence at this level of theory is
that the associated lifetimes typically fall in the order of
nanoseconds, much above the feasibility of TDDFT
dynamics. To overcome this difficulty, simulations were
performed with an acceleration factor f in the equation of
motion:

ℏ
∂ρ̂
∂t ¼ −i½Ĥ; ρ̂� − f

A
ℏ
½½μ̂; Ĥ�; ρ̂�: ð17Þ

For each factor f a different decay rate ΓðfÞ is extracted.
Then, the rate corresponding to the nonaccelerated evolu-
tion, f ¼ 1, is extrapolated from a plot of ΓðfÞ versus f.
Figure 3 illustrates this treatment for the 2s2pð1PÞ → 2s2

transition in the beryllium atom. The curves in Fig. 3(a) that
result from the excitation with a short electric pulse exhibit
an exponential decay of the occupancies for f in the range
5 × 104–5 × 105 (details in the Supplemental Material). It
can be seen in Fig. 3(b) that τ−1 varies linearly with f,
which facilitates a reliable extrapolation. This linear rela-
tionship between the decay rate and the acceleration factor
can be formally derived for a two-level system (see
Supplemental Material), suggesting that it is not an
accident linked to this particular case, but arises from
the structure of the coupling term and holds in general. The
resulting lifetime of 1.97 ns is consistent with the exper-
imental values, reported in the range 1.77–2.5 ns [58].
The same procedure was applied to the Be isoelectronic

species Bþ and C2þ. This isoelectronic series has been
thoroughly characterized in the literature, both from theory
and experiments, and at the same time its excitations are
well described by TDDFT. These circumstances make
these species an appropriate set for benchmarking. The
extrapolated lifetimes for Bþ and C2þ [Fig. 3(b)] are 0.831
and 0.558 ns, respectively, in impressive agreement with
the available data from beam-foil spectroscopy, of 0.86�
0.07 and 0.57� 0.02 ns [59,60].

FIG. 2. (a) Electronic energy (black) and populations (N1, N2,
N3, andN4) as a function of time for a single-electron, four-atoms
TB model, departing from the highest energy excited state (see
text). The eigenvalues are −6.4721, −2.4721, 2.4721, and 6.4721
a.u. (b) Power spectrum of the relaxation process encompassing
the 3 → 2 and 2 → 1 transitions. In the insets, the spectral line
shapes (red) fit the Lorentzian profiles (blue) inherent to natural
broadening.
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Excitation energies from linear-response TDDFT for
these systems exhibit errors in the order of 5% (see
Supplemental Material). In light of this, the accord between
simulations and experiments—matching or excelling the
one obtained through much more costly multiconfigura-
tional quantum chemistry methods—may seem surprising
and even puzzling. We conjecture that the reason behind
this accuracy is that the decay process is determined by the
acceleration of the dipole, and not by the dipole itself.
Whereas TDDFT may fail to reproduce the exact magni-
tude of the dipole moment—in the sameway that it may not
get the right position of a spectral signal but can reasonably
predict its shift upon a change in the environment [3]—it is
seemingly good enough to describe the dipole variations,
which dominate the relaxation dynamics. However, the

dynamical description will be subject to the electronic
structure method: the quality of the simulations will be
conditioned by the ability of the Hamiltonian to reproduce
the electronic excitations.
Final remarks.—We develop a formalism for coherent

radiative electron dynamics which quantitatively captures
the physics of spontaneous emission with no parameters.
Even so, in this framework emission is not truly sponta-
neous since pure eigenstates remain stationary, and some
perturbation is needed to trigger the process. This is
inherent to the underlaying semiclassical model grounded
in the Larmor equation. Alternatively, in defining the
Rayleigh dissipation function, each particle could be
envisioned as an independent emitter. Then Eq. (3) would
become μ0=6πc

P
i½μ̈iðtÞ�2 ¼ 2F. This might be interesting

for certain open-shell systems where, as observed in
preliminary tests, the dipoles of two electrons can cancel,
quenching the dynamics. It could also be useful in the case
of two separate charge distributions—for example, two
excited molecules—whose radiation will be represented as
originating from a single average dipole. Such a scheme,
plus the inclusion of quantum-mechanical spontaneous
emission—for example via stochastic fluctuations—will
be the subject of future investigations.
This is a powerful and efficient formulation that can be

adapted to any Hamiltonian and which has permitted us to
realize—to the best of our knowledge for the first time—
realistic simulations of fluorescence. Its success under-
scores that the electromagnetic energy dissipation from
excited electrons can indeed be described for most purposes
as dipolar classical radiation. Beyond situations involving
strong photon-electron coupling, the validity of our for-
malism is connected with that of the Larmor formula,
which describes radiation from an arbitrary charge distri-
bution. Assumptions of the Larmor formula are quite
general [44], implying that our model will perform properly
in situations from weak to moderate light-matter interac-
tion, which include most applications of interest in the
molecular and materials sciences (the limitations of this
approach are discussed in the Supplemental Material).
Thus, this formalism widens the scope of first-principles
time-dependent quantum simulations, opening the door to
the real-time modeling of a diversity of photophysical
processes inaccessible to current approaches, from reso-
nance energy transfer to time-resolved spectroscopy and
photoluminescence.
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FIG. 3. Results from first-principles TDDFT simulations for the
deexcitation of the 2s2p state in Be, Bþ, and C2þ, in response to
an applied field. (a) Electronic energy (relative to the ground
state) as a function of time for Be with different acceleration
factors f, see Eq. (17). The corresponding logarithmic plots are
portrayed in the inset. (b) Inverse lifetime as a function of the
acceleration factor f for Be, Bþ, and C2þ. The dashed lines
correspond to the linear fits. The inset shows the y-axis intercept
for f ¼ 1, which inverse corresponds to τ.
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