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Under uniaxial shock compression, the steepness of the plastic shock front usually exhibits power law
characteristics with the Hugoniot pressure, also known as the “Swegle-Grady law.” In this Letter, we show
that the Swegle-Grady law can be described better by a third power law rather than the classical fourth
power law at the strain rate between 105–107 s−1. A simple dislocation-based continuum model is
developed, which reproduced the third power law and revealed very good agreement with recent
experiments of multiple types of metals quantitatively. New insights into this unusual macroscopic
phenomenon are presented through quantifying the connection between the macroscopic mechanical
response and the collective dynamics of dislocation assembles. It is found that the Swegle-Grady law
results from the particular stress dependence of the plasticity behaviors, and that the difference between the
third power scaling and the classical fourth power scaling results from different shock dissipative actions.
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Understanding the self-similar regularities of the
dynamic response of solids under shock loading is the
key for the development of universal methods for inves-
tigating the rheological properties and the destruction of
condensed matter due to multiscale structural effects [1–7].
The “Swegle-Grady law” [8–10], describing the self-
similarity of plastic wave fronts, is regarded as the most
striking manifestations of the spatiotemporal dynamics
[1,4], and continuous to receive considerable experimental
[11–14] and theoretical attention [15–21] since it was
proposed about 40 years ago [8,9]. However, the under-
lying mechanisms of this criticality are far from well
understood until now. Previous studies [16,22] have
demonstrated the important role of plasticity on the macro-
scopic power law. However, a clear quantitative under-
standing is still lacking. The complexity of this problem
lies in that the shock compression process is so ultrafast
[23–26], during which the elastic compression and the
plastic relaxation is strongly coupled [27–28], while the
present diagnostic techniques still cannot capture the
evolution laws of the plasticity microstructures [23–26].
To understand this self-similarity, the well-known

Grady’s theoretical model [8] ignores the shock variance
of the plastic dissipative action, and predicts the fourth
power scaling between the strain rate and the Hugoniot
pressure _ε ∼ p4

h. As the theoretical basis of the fourth
power law, to the authors’ knowledge, shock invariance
of the dissipative action has never been verified
rigorously. Mesoscopic experiments at 1010 s−1 published
by Crowhurst et al. [13] tend to support this assumption
and the fourth power scaling proposed by Grady for
macroscopic experiments [29] at moderate strain rates.

However, the divergence in the length scales of the tested
samples and the strain rate ranges makes the conclusion
suspicious. Particularly, the wave structure, from which the
Swegle-Grady law is obtained, may vary with the propa-
gating distance of shock wave [6]. In addition, the scaling
exponent observed in some recent experiments [30–47] and
that generated by multiscale simulations [15,18] are closer
to 3 rather than 4 [see Figs. 4(a) and 4(b)]. Discrepancy
between classical theory and recent experiments and
simulations raises the suspicion of the fourth power law,
and compels further research into the fundamental laws of
this unusual phenomenon.
In this Letter, we avoid Grady’s hypothesis on the shock

invariance of the dissipative action, and demonstrate that
the quantitative connection between the macroscopic power
law and the dislocation behaviors can be derived theoreti-
cally. A dislocation-based continuum model is proposed
from the perspective of energy. This model successfully
reproduced the wave structures observed experimentally in
multiple kinds of metals at the strain rate between
105–107 s−1. This provides new insights that the essence
of the macroscopic power law characteristic is the particu-
lar stress dependence of dislocation motion and generation.
Upon being subjected to a shock, materials are com-

pressed to the Hugoniot state by the elastic precursor and
the plastic shock wave together. The Hugoniot state is
nearly a hydrostatic state, where the shear stress is much
lower than the hydrostatic pressure [24,27,28]. This implies
that the input shear strain energy by the shock is almost
totally relaxed by the plastic dissipation. Considering that
the stress increase in a macroscopic material induced by the
elastic precursor is much lower than the Hugoniot pressure
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due to the “elastic precursor decay” [6], and that the
deformation on the elastic precursor is one-dimension
elastic [6,24,28], the mechanical response on the elastic
precursor can be neglected (see Sec. S3 [48]). Therefore,
the energy conservation relation that the input shear strain
energy is equal to the plastic dissipation energy on the
plastic front is obtained. In the following, based on this
relation, we are going to analyze the stress-strain relation
on the plastic front with the aim to gain further insight into
the power law characteristics of the plastic shock front. The
basic idea of our theoretical model is schematically
summarized in Fig. 1.
As schematically shown in Fig. 2, during the shock

compression, the evolution of the resolved shear stress
(RSS), the driving force for dislocation slip, can be written as

dτ ¼ 2mμð_eyy − _γpÞdt; ð1Þ

where eyy is the longitudinal deviatoric strain eyy ¼ 2
3
ε, y

denotes the loading direction, ε is the longitudinal strain, γp is
the plastic strain, a superposed dot means a time derivative, μ
is the shear modulus, andm is the projection factor. The linear
elasticity relation in Eq. (1) to describe the shear deformation
is reasonable because the elastic deviatoric strain on the plastic
front is very small (see Sec. S4 [48]).
Inspired by Grady [10], we use the “fastest rising

portion” (see S10 and Fig. S7 [48]) of the plastic front
to replace the plastic front when performing the analysis.
On the plastic front, the increase and decrease of RSS due
to the shock compression and plastic relaxation can be
written as

τh − τ0 ¼
Z

t1

t0

2mμ_eyydt; ð2Þ

τh − τC ¼
Z

t1

t0

2mμ_γpdt; ð3Þ

where t0 and t1 are the beginning time and the ending time
of the plastic front, τ0 is the RSS at the Hugoniot elastic
limit (HEL), τc is the critical resolved shear stress (CRSS)
at the Hugoniot state, and τh ¼ 2mμeh is defined as the
total input shear stress by the shock compression with
plastic relaxation neglected (see Fig. 2 and Sec. S5 [48]).
eh ¼ 2

3
ðuh=DÞ is the longitudinal deviatoric strain at the

Hugoniot state, where uh is the particle velocity at
Hugoniot state, D ¼ C0 þ suh is the shock velocity, s
and C0 are the parameters of shock Hugoniot relation. If
uh ≪ D, which holds well in this work,D is approximately
equal to C0. Thus, τh is proportional to ph, ph ¼ ρ0Duh
(see Sec. S12 [48]).
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FIG. 1. Schematic plot showing the basic idea of our theoretical model. h_εi is average strain rate, h_γpi is average plastic strain rate, ph
is Hugoniot pressure, τ is shear stress, τh is total input shear stress, ρM is dislocation density, and VD is dislocation velocity. MD means
molecular dynamics, XFEL means x-ray free electron laser.
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FIG. 2. Calculated time histories of particle velocity and
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toric stress along the real path, blue dashed line denotes the
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As mentioned above, τ0 is much lower than ph due to the
elastic precursor decay. The hydrostatic state at the
Hugoniot state implies that τc is also much lower than
ph. Given that τh is comparable to ph, the right-hand side of
Eq. (2) is approximately equal to that of Eq. (3),

Z
th

t0

2mμ_eyydt ¼
Z

t1

t0

2mμ_γpdt: ð4Þ

If both sides of Eq. (4) are divided by the rise time,
Δtrise ¼ t1 − t0, the conclusion is gained that the average
strain rate,h_εi ¼ ð1=ΔtriseÞ

R t1
t0 _εdt, is linear to the average

plastic strain rate, h_γpi ¼ ð1=ΔtriseÞ
R t1
t0 _γpdt. This is con-

sistent with Molinari et al.’s derivation based on continuum
mechanics [16]. Thus the power scaling relationship of _ε
with ph, h_εi ∼ pn

h, where n is the scaling coefficient, is
equivalent to the power scaling relationship of _γp with τh,
h_γpi ∼ τnh. Therefore, in the following, we aim to address
the power scaling relationship from the viewpoint of plastic
relaxation.
A thermoelastic-viscoplastic model is used to address

this behavior. The details of this model can be found in our
previous work [56]. The essence of the viscoplastic model
is the governing equation of the dislocation multiplication
rate proposed from that a fixed portion of the dissipated
energy, about 10% [57] and controlled by the multiplication
coefficient, provides the energy needed for newly generated
dislocations. The governing equation is expressed as

ðdρM=dtÞ ¼ αmultðτ_γp=μb2Þ; ð5Þ

where τ_γp is the dissipation rate of plastic strain energy
density, αmult is the multiplication coefficient and depends
on materials, b is the burgers vector, and μb2 is linear to the
elastic energy per unit length of dislocation. αmult as well as
other model parameters are listed in Table S2 [48].
Using this model, we successfully reproduce the wave

structures and the power law scaling of multiple kinds of
metals, including aluminum, copper, silver, and tantalum.
The plate-impact experiments are simulated at different
applied stresses. Simulated wave profiles of aluminum and
copper, as shown in Figs. 3(a) and 3(b), and those of other
metals (see Figs. S4 and S5 [48]) match remarkably well
with experimental results on the critical features, including
the HEL and the plastic front. The calculated dislocation
density at the Hugoniot state is in general agreement with
experimentally observed residual dislocation density in
recovered aluminum and that predicted by Austin’s model
[18] and dislocation dynamics (DD) simulations [58]
[see Fig. 4(c)].
Model-predicted power law characteristics of the strain

rate with the Hugoniot pressure also match well with recent
experiments [30–47] at the strain rate between 105 and
107 s−1 [see Figs. 4(a) and 4(b)]. In particular, the fitted
scaling coefficient of aluminum is ∼3.0, close to 3.3

proposed by Holian et al. [15] and Austin et al. [18],
while that of copper is about 2.32. We did not address the
strain rate-stress relation obtained from mesoscopic experi-
ments at the strain rate of ∼1010 s−1 because the deforma-
tion mechanisms at such extreme conditions are still poorly
understood, which may be beyond the capability of the
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current model. Apart from aluminum and copper, our
model-predicted scaling coefficients of silver and tantalum
at the same strain rate range, which are 2.5 and 3.1,
respectively, are also in good agreement with experimental
results of silver [31] and tantalum [34,46,47] (see Figs. S4
and S5 [48]).
To further elucidate the power law scaling behavior and

the dependence of scaling exponent on the materials, a
virtual path for the evolution of the RSS is established
based on energy conservation, along which the RSS is
firstly compressed to τh by purely elastic deformation and
subsequently relaxed to τc by purely plastic deformation, as
shown in Fig. 2. The establishment of the virtual path is to
simplify the analysis of the dislocation density because it is
hard to obtain the analytical expression of the dislocation
density along the real path (see Sec. S5 [48]). This path
guarantees that the input shear strain energy and the
dissipated shear strain energy are the same as those along
the real path, which is justified in the following.
Along the real path, the shear strain energy at the

Hugoniot state can be written as

Eh
shr ¼

Z
eyy

0

2μðe − γpÞde; ð6Þ

where e is the deviatoric strain, and γp is the plastic strain.
For simplification, we use the longitudinal component of the
shear strain energy to represent the shear strain energy. The
first term of Eq. (6) is the input shear strain energy,
Eshr ¼

R eyy
0 2μede ¼ μe2yy, while the second term is the

plastically dissipated energy, Edissip ¼
R eyy
0 2μγpde. As men-

tioned above, the shear stress at the Hugoniot state is almost
negligible. Thus Eh

shr can be neglected, and Eshr is approx-
imately equal to Edissip. Along the virtual path, the input shear
strain energy, Ev

shr ¼
R eyy
0 2μede ¼ μe2yy, equals to Eshr, and

the dissipated energy, Ev
dissip ¼ Ev

shr, equals to Edissip.
If the dissipated energies along two paths are the same,

the densities of newly generated dislocations along two
paths are also the same provided that a fixed portion of the
dissipated energy provides the energy needed for newly
generated dislocations [57], which can be guaranteed by
our constitutive model. Thus, we can perform theoretical
analysis on the dislocation density with our model along
the virtual path to gain an insight into the dislocation
density evolution along the real path.
Along the virtual path, the elastic deformation and the

plastic deformation are decoupled. Thus, the shear stress-
plastic strain rate relationship can be expressed as

dτ ¼ −2mμ_γpdt: ð7Þ

The time integral of the dislocation density can be
replaced by a stress integral based on Eq. (7).
Substituting Eq. (7) into Eq. (5), the relationship between
dislocation density and the RSS can be written as

dρM ¼ − αmultτdτ
2mμ2b2

: ð8Þ

To a good approximation, we neglected the evolution of
other dislocation substructures when integrating the dis-
location density governing equation because the evolution
rates of other dislocation substructures are at least one order
of magnitude lower than the multiplication rate on the
plastic shock front (see Fig. S3 [48]). Integrating Eq. (8)
with respect to the RSS from τ to τC along the plastic part of
the virtual path, dislocation density can be expressed as

ρMðτÞ ≈ ρ0 þ
αmultðτ2 − τ2CÞ

4mμ2b2
: ð9Þ

If the upper limit of the integration is set as τh, the
dislocation density is

ρMðτhÞ ≈
αmultτ

2
h

4mμ2b2
; ð10Þ

considering that ρ0 is much smaller than ρMðτhÞ and τC is
much smaller than τh. Equation (10) implies that the scaling
coefficient of dislocation density with ph is 2 given
that τh is linear to ph. From Eq. (10), we can infer
that the dislocation density along the real path also
exhibits quadratic stress dependence. The quadratic stress
dependent dislocation densities predicted by Eq. (10) of
aluminum and copper are in good agreement with model-
predicted results along the real path, as shown in
Fig. 4(c), which indicates that it is reasonable to analyze
the evolution of dislocation density with the aid of the
virtual path, and that the constitutive model and the
theoretical analysis along the virtual path are consistent.
Moreover, the predicted scaling coefficient of the disloca-
tion density with ph is comparable to 1.7 obtained by DD
simulations [58].
Following the same procedure, we can also obtain the

stress dependence of dislocation density if other dislocation
density equations are employed. For example, the scaling
coefficient obtained from the equation used by Devincre
et al. [59] is 2, while that by Wang et al. [60] is 1.43 (see
Sec. S6 [48]). Both are comparable to the theoretical
prediction of this article.
With respect to the dislocation velocity, its dependence

on shear stress can be expressed as

VD ¼ A0τ
α; ð11Þ

where A0 is a constant and α describes the stress sensitivity
of VD, as discussed later.
Combining Eqs. (9) and (11), one can obtain the

stress dependence of the plastic strain rate, _γp ¼
f½A0αmultτ

αðτ2 − τ2CÞ�=½4mμ2b�g. The power law character-
istic of the average plastic strain rate can be estimated by
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integrating the plastic strain rate with respect to τ along the
virtual path,

h_γpi ¼
1

τC − τh

Z
τC

τh

_γpðτÞdτ ≈ ητβh; ð12Þ

where η is a constant, the scaling coefficient β ¼ 2þ α and
τC is neglected because it is much lower than τh. Below the
CRSS, the thermal activation dominates, α > 1 [2,61], and
β > 3, which may explain the transition of rate sensitivity
of the flow stress at the strain rate around 103–104 s−1
[such as Fig. 3(b) in [62] ]. Given that the shock induced
shear stress surpasses the CRSS of the metals of interest
quickly, phonon drag and the relativistic effect dominate
dislocation motion for the considered strain rate range. If
phonon drag dominates, α ¼ 1 [2,63], and h_γpi is cubic
shear stress dependence, h_γpi ∼ ðτhÞ3. If VD approaches the
transverse sound speed, relativistic effect dominates, α
decreases toward 0 [2,63], and β gradually drops from 3 to
2 as applied stress increases, which can explain why the
scaling coefficient of copper and silver, whose transverse
sound speeds are easier to be achieved than aluminum, is
closer to 2 than 3. The scaling coefficients predicted
by Eq. (12) match well with model-predicted results and
experimental results [see Figs. 4(a) and 4(b)]. Here, the
average plastic strain rate along the virtual path is over-
estimated because the maximum RSS along the real path is
much lower than τh due to the strong coupling between the
shock compression and the plastic relaxation along the real
path, as shown in Fig. 2. Nonetheless, the power law
characteristics of the plastic strain rate along two paths are
the same because the stress dependence of the dislocation
velocity and that of the dislocation density are path
invariance.
Then, why does our model deviate from the previous

proposed fourth power law? When deriving it, Grady
assumed that the dissipative action keeps invariant with
the strain rate [8–10,64]. As opposed to Grady’s hypoth-
esis, the key hypothesis of our explanation of the third
power law is that the plastic dissipation energy is related to
the dislocation generation rate. Our calculated results
suggest that the dissipative action exhibits power law
scaling with the strain rate. The calculated scaling coef-
ficient of the dissipative action with the strain rate of
aluminum is ∼0.36 at the strain rate between 105 and
107 s−1 (see Fig. S8 [48]). The dissipative action is written
as, A ¼ θ_ε0.36, where θ is a constant. When deriving
the fourth power law, the following expression is obtained
by Grady with the hypothesis that A is a constant,
_ε ¼ ½S=3Aρ0ðρ0C2

0Þ3�p4
h. If one substitutes the strain rate

dependent A into Grady’s theoretical model, the scaling
coefficient becomes 2.94, in accordance with our model-
predicted scaling coefficient. Therefore, different conclu-
sions of our work and Grady’s work result from different
dissipative actions.

A conclusion can be gained that the power law character-
istics of the plastic shock front is determined by the stress
dependence of the plastic behaviors. In particular, the linear
stress dependence of dislocation velocity and the quadratic
stress dependence of dislocation density contribute to the
third power law together. In this sense, it is expected that
the relationship of the strain rate with the Hugoniot pressure
at other conditions, e.g., at elevated temperature, will also
exhibit third power law as long as the evolution laws of
dislocations keep the same. Experimental results and
calculated results, generated by the same model, at elevated
temperature validated this expectation to some extent, as
shown in Figs. 3(c) and 4(b).
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