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Exceptional points (EPs) of a non-Hermitian Hamiltonian with parity-time-reversal ðPT Þ symmetry
have the potential to drastically enhance the capabilities of metrology and sensing through their power-law
growing sensitivity to external perturbation. With the ability of generating and tuning dissipation in a single
trapped ion system, we observe rich dynamics and detailed quantum phase transitions from the
PT -symmetric phase to the symmetry-breaking phase. In this single qubit full quantum system, we
develop a method to precisely determine the location of EP without any fitting parameter, and extract the
eigenvalues in a unified way through all parameter regions. We can also obtain the full density matrix by
quantum state tomography. Finally, we suggest from theoretical analysis that the periodically driving
PT -symmetric non-Hermitian system can be used to measure the magnitude, frequency, and phase of time-
dependent perturbation with EP enhancement.

DOI: 10.1103/PhysRevLett.126.083604

Introduction.—A non-Hermitian Hamiltonian with par-
ity-time-reversal (PT ) symmetry, whose spectra is also real
in some regime, is generally regarded as a natural extension
of conventional quantum theories from real phase space to
complex phase space [1]. An unconventional phase tran-
sition occurs across an extraordinary type of singular point
called an exceptional point (EP), at which the real spectra
transits to complex conjugate pairs and the PT symmetry
is spontaneously broken [2,3]. These EPs have the potential
to drastically enhance the capability of metrology and
sensing through their power-law growing sensitivity to
external perturbation [4,5].
By manipulating the gains and losses in exchange with

an environment, many experimental works have been
performed to explore static and dynamical characteristics
near EPs. The PT -symmetric non-Hermitian Hamiltonian
were generally implemented in quasiclassical systems with
balanced gain and loss, such as cavities [6–8], electronics
[9–14], photonics [15,16], acoustic-mechanical systems
[17,18], nonlinear medium [19–23], acoustic resonators
[24,25], and single-mode lasers [26,27], where only the
amplitude information was measured. Recent progress has
also included more challenging approaches in mapped
open quantum systems [28], such as the optical pure
lossy system [29], single-photon interferometric network
[30,31], cold atoms [32,33], nitrogen-vacancy centers
[34,35], superconducting circuits [36,37], entangled pho-
tons [38] and trapped ions [39], where the quantum phase
information could be obtained in principle.
In order to achieve the EP enhancement of quantum

metrology and sensing, it is crucial to accurately determine

the location of EPs in experiments and measure the asymp-
totic behavior of the energy around the EP without special
prior knowledge. This is in general a difficult task for
quantum systems and has not been reported in any previous
work, mainly owing to the lack of feasible method to
precisely measure the eigenvalues of non-Hermitian systems.
Here, we develop a novel protocol inspired by quantum state
tomography [40], and directly determine the eigenvalues and
EPs without any fitting parameter. We first realize various
PT -symmetric non-Hermitian Hamiltonians using four
Zeeman levels of a single trapped Ybþ ion through state-
dependent dissipative processes. PT -symmetry breaking
phenomena and quantum phase transition dynamics across
the EP are experimentally observed. Our work is the first
experimental scheme to simultaneously generate and fine-
tune dissipation and interlevel interaction with arbitrary time
dependence in a massive single qubit system. To show the
capability of this scheme, we realize a Floquet non-Hermitian
system under periodic driving, and map out the phase
diagram without any fitting parameter. Finally, we demon-
strate by theoretical analysis that the system can be employed
as a quantum sensor to extract the magnitude, frequency, and
phase of an external time-dependent perturbation.
Experimental system.—We consider a single qubit non-

Hermitian Hamiltonian with PT symmetry

ĤPT ¼ Jσ̂x þ iΓσ̂z; ð1Þ

where σ̂x ≡ j↓ih↑j þ j↑ih↓j and σ̂z ≡ j↓ih↓j − j↑ih↑j are
Pauli operators. The time evolution of a quantum state
jψðtÞi satisfies the Schrödinger type equation
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i
d
dt

jψðtÞi ¼ ĤPT jψðtÞi: ð2Þ

The state jψðtÞi can be mapped to another state
jΨðtÞi ¼ e−ΓtjψðtÞi, whose evolution is governed by a
mapped Hamiltonian

Ĥ0
PT ¼ ĤPT − iΓÎ; ð3Þ

with Î ¼ j↓ih↓j þ j↑ih↑j the identity operator. Thus, if one
can realize the mapped Ĥ0

PT , the evolution of the original
PT -symmetric Hamiltonian ĤPT can be obtained by
measuring the mapped state jΨðtÞi and removing the
scaling factor e−Γt.
In our experiment, the mapped Hamiltonian Ĥ0

PT is
realized in a dissipative single qubit system, where the spin
states j↓i and j↑i correspond, respectively, to the two
hyperfine states jF ¼ 0; m ¼ 0i and jF ¼ 1; m ¼ 0i in the
2S1=2 ground level manifold of 171Ybþ, with a hyperfine
splitting ωHF ≈ 12.6 GHz. We use microwave to couple
this interlevel transition and the coupling strength J is
measured by fitting the Rabi frequency. A weak 369.5 nm
beam is used to excite the ion from jF ¼ 1; m ¼ 0i to the
upper 2P1=2 state, and the beam contains only π-polariza-
tion components to ensure that excitations from any other
Zeeman states (jF ¼ 1; m ¼ �1i) are forbidden by selec-
tion rules. The excited 2P1=2 state can spontaneously decay
to all three Zeeman states of the 2S1=2 manifold by emitting
photons with σ� or π polarizations, resulting in a loss of j↑i
state at a dissipation rate 4Γ. The experimental setup and a
diagram of this scheme are illustrated in Fig. 1(a). A more
detailed description of the experimental system and a
theoretical derivation of this dissipative scheme using the
Lindblad master equation can be found in Supplemental
Material [41].
The population of the j↓i state is directly measured by

the standard fluorescence counting rate threshold method
[42], which is described in Supplemental Material [41]. The
other state j↑i is measured by adding appropriate π flips.
With the results of j↑i state population, we can obtain the
dissipation rate Γ from a fitting of exponential decay by
turning on the 369.5 nm dissipative beam only. A typical
set of data is shown in Fig. 1(b). The mapped Hamiltonian
Ĥ0

PT is realized by applying the coupling ωHF and
dissipative beams simultaneously, where a clear combina-
tion of exponential decay and Rabi oscillation is observed
as in Fig. 1(c). In this plot, we prepare the system in the
initial state j↓i, a detection of the same state j↓i after a
certain time evolution is given by

jh↓jexpð−iĤ0
PT tÞj↓ij2 ¼ e−2Γt

�
cosðϵtÞþΓ

ϵ
sinðϵtÞ

�
2

; ð4Þ

where ϵ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − Γ2

p
. We can also obtain the parameters J

and Γ from a fitting of the expression above. The results are

in good agreement with the ones from Rabi frequency and
exponential decay alone.
Phase transition.—The dynamical evolution of a

Hermitian Hamiltonian can be represented by a unitary
operator. For a single qubit, the evolution can always be
expressed as a rotation on a Bloch sphere, where the
eigenvectors of the Hamiltonian correspond to the rotation
axes, and the eigenvalues to the rotating velocities. This
property thus allows us to determine the eigenvalues by
fitting the Rabi oscillation of the state population. For a
PT -symmetric non-Hermitian system, the eigenvalues are
also real in the PT -symmetry preserving phase, and the
same scheme can be used to measure the eigenvalues.
However, in the PT -symmetry broken regime, the eigen-
values acquire imaginary components and can no longer be
considered as rotating velocities. Previous works usually
employ different schemes to extract the eigenvalues for the
two phases, and locate the EP by comparing their individ-
ual results.
Here, we introduce an improved method based on

quantum state tomography. This method can measure
the eigenvalues in a unified scheme within a wide range
across the PT transition, and precisely determine the EP.
By evolving from a proper initial state and measuring
with a specific basis, we can define the following two
quantities:
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FIG. 1. (a) The energy level of 171Ybþ and the experimental
setup. (b) Time evolution of the j↑i state population without
interspin coupling. The dissipation rate Γ is determined by an
exponential fit. (c) Evolution of the j↑i state population with both
the coupling and dissipation beams. The data can be fit by a
combination of a Rabi oscillation (gray dashed) and an expo-
nential decay (black dashed). The evolution operator is defined as
Û ¼ e−iĤ

0
PT t. For panels (b) and (c), the black solid curve is the

numerical simulation and the points are experimental data
averaged from 1000 rounds of measurement. The error bars in
J and Γ are estimated by the standard deviation (1σ) of 20 rounds
of experiment and fitting [41].
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PJðtÞ ¼ jh↑j expð−iĤPT tÞj↓ij2

¼ J2

J2 − Γ2
sin2ðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − Γ2

p
Þ;

PΓðtÞ ¼
����h↑j − h↓jffiffiffi

2
p expð−iĤPT tÞ

j↑i þ j↓iffiffiffi
2

p
����
2

¼ Γ2

J2 − Γ2
sin2ðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − Γ2

p
Þ; ð5Þ

which can both be obtained from population measurement
of the two spin states and a reverse mapping from Ĥ0

PT to
ĤPT . Further details are discussed in Supplemental
Material [41]. By subtracting the two quantities, we find
that the sign of PJðtÞ − PΓðtÞ is positive (negative) in the
PT -symmetry unbroken (broken) phase, thus works as an
indicator for the phase boundary. The eigenvalues can be
obtained as E ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − Γ2

p
(unbroken) or �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 − J2

p
(broken) by calculating arcsin or arcsinh functions fol-
lowed by a division over time. Higher accuracy can be
achieved by performing an additional linear fit along the
scanning time t.
Since an unknown external perturbation may bring a

system around an EP to either unbroken or broken regime,
the ability of using a unified method to distinguish the two
phases and extract the eigenvalues is of particular impor-
tance for potential applications in quantum metrology. As a
side benefit, the coefficient J2=ðJ2 − Γ2Þ is automatically
eliminated, thereby avoiding the unstable multiparameter
nonlinear fitting of the exponentially damped Rabi oscil-
lation as shown in Fig. 1(c).
To demonstrate the feasibility of this method, we tune the

system to scan the relative ratio of coupling and dissipation
J=Γ, while the evolving time is fixed at t ¼ 1=J. The EP is
determined experimentally by calculating the intersection
of two interpolated curves, and agrees well with the
theoretical prediction of J ¼ Γ as shown in Fig. 2(a).
We also obtain the eigenvalues at some typical values of
J=Γ in both the unbroken and broken regimes by linear
fitting with evolution time, and find good agreement with
theoretical predictions as shown in Figs. 2(b) and 2(c).
We then study the full quantum dynamics of the PT -

symmetric Hamiltonian and the important phase informa-
tion by measuring the density matrix ρ ¼ jψ0ðtÞihψ0ðtÞj of
nonunitary time evolution, where jψ0ðtÞi¼ e−iĤPT tj↓i. The
matrix element of the density matrix is ρjmni ¼ hmjρjni.
When the eigenvalues are real, the system is in the
PT -symmetric phase. The diagonal and off-diagonal
elements, which represent, respectively, the state popula-
tion and quantum coherence, exhibit bounded Rabi oscil-
lations as shown in Fig. 2(d). The two eigenvalues approach
zero and the corresponding eigenmodes become degenerate
at the second-order EP, across which the system transits to
the PT -symmetry broken phase [46]. The eigenvalues
then become pure imaginary, and all the diagonal and

off-diagonal elements of density matrix increase exponen-
tially over time, as shown in Fig. 2(e). Note that only the
imaginary part of the off-diagonal elements are depicted
since they are always pure imaginary in theory. Using the
quantum state tomography technique, we measure the
complete quantum state density matrix at two typical
choices of J=Γ before and after the EP. From Fig. 2(f),
we observe a good agreement between experimental data
and theoretical calculations, which demonstrates the reli-
ability of our system and the measuring protocol.
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FIG. 2. (a) Determination of EP from the measurement
of PJðtÞ (black) and PΓðtÞ (gray). (b) In the PT -symmetry
broken phase, we can calculate from PJðtÞ − PΓðtÞ (black) the
results of sinh−1½PΓðtÞ − PJðtÞ� (gray), which show a clear linear
time dependence with the slope being one of the eigenvalues.
(c) The real (black) and imaginary (gray) parts of the eigenvalues.
(d) The upper diagonal (black) and the imaginary part of the off-
diagonal (gray) elements of the density matrix ρ obtained in the
PT -symmetric phase with J=Γ ¼ 10. (e) The same results as in
(d) for the PT -symmetry broken phase with J=Γ ¼ 0.826.
(f) The upper panel shows absolute values of the density matrix
at t ¼ 10 μs of (d) and the lower panel shows the same at
t ¼ 8 μs of (e). The left two plots are measured using quantum
state tomography and the right are numerical simulations. For
(a)–(e), the solid curves are numerical results and the dashed lines
are interpolations.
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Floquet system.—We extend the discussion to non-
Hermitian PT -symmetric systems under periodic driving,
which can host richer phase diagrams [32,47–50]. Previous
studies have shown that the symmetry breaking of a
Floquet system is related to multiphoton resonance proc-
esses [32,48]. Many theoretical works consider the periodic
modulation of dissipation rate, and predict infinite reso-
nance peaks as the magnitude of dissipation tends to zero
[48–50]. Recently, an experiment with cold atom has
extended the discussion to the case of periodically modu-
lating coupling J, and observed similar multiphoton res-
onance processes but with a quantitative difference [32].
We first study the situation where the interspin coupling

oscillates cosinusoidally between 0 ∼ 2J at a frequency ω,
where the instantaneous Hamiltonian reads

ĤPT ¼ J½1þ cosðωtÞ�σ̂x þ iΓσ̂z: ð6Þ

Using the Floquet method, we can define an effective
Hamiltonian

Ĥeff ¼
i
T
logðTe−i

R
T

0
ĤPT dtÞ; ð7Þ

where T is the period of modulation and T is the
time-ordering operator. As proved in Supplemental
Material [41], when ĤPT has even time parity within a
period, i.e., ĤPT ðT=2 − tÞ ¼ ĤPT ðT=2þ tÞ, the effective
Hamiltonian Ĥeff is PT symmetric and takes the form
Ĥeff ¼ Jeff σ̂x þ iΓeff σ̂z, where the effective parameters Jeff
and Γeff depend on the driving frequency ω [41]. A PT
transition can be defined for this effective Floquet
Hamiltonian at Jeff=Γeff ¼ 1.
We focus on the case of J > Γ, where the instantaneous

Hamiltonian Eq. (6) is in thePT -symmetric regime in most
of the time within an oscillating period. When the driving
frequency ω is small, this Floquet system is PT symmetric
with Jeff=Γeff > 1 and the state population presents an
oscillatory behavior in time evolution as shown in Fig. 3(a).

By increasing ω beyond a critical value, one can tune
the system into the PT -symmetry broken phase, where
the oscillation is enhanced as illustrated in Fig. 3(b).
Nonetheless, the difference between the two scenarios is
much less significant than that for static Hamiltonians, in
which case the comparison is made between exponential
divergence and bounded oscillation. Thus, one may have to
rely on a quantitative analysis of the population measure-
ment to distinguish the two phases. By using our scheme,
however, one can obtain the values of PJ and PΓ from state
population at t ¼ T [41], and clearly identify the phase
by calculating PJ − PΓ as 0.86 [Fig. 3(a)] and −0.12
[Fig. 3(b)] for the PT -symmetric and broken phases,
respectively.
The method can be directly applied to cases with more

general time dependency, especially the ones without
simple analytic solution. To demonstrate such an ability,
we implement a cosinusoidal modulation on the coupling J
between 0 ∼ 2J at frequency ω, and simultaneously
a square-wave modulation on the dissipation between
0 ∼ Γ at the same frequency and phase. The time-dependent
Hamiltonian is

ĤPT ¼ J½1þ cosðωtÞ�σ̂x þ iΓ
1 − sign½cosðωtÞ�

2
σ̂z: ð8Þ

In Fig. 4, we determine the phase diagram by measuring
PJ − PΓ at time t ¼ 2π=ω (data shown in Supplemental
Material [41]) and observe good agreement between
experimental results (left) and numerical simulations
(right). One can identify four PT -symmetry broken
regions, which get narrower with decreasing Γ and even-
tually merge to points at ω=ð2JÞ ¼ 1; 1=2; 1=3, and 1=4,
respectively. These PT -symmetry broken points at Γ → 0
can be explained by multiphoton resonance processes,
which are also predicted and observed in a periodically

J 0.84 UnBroken

0 10 20 30
0

1

2

t s

2 2

J 1 Broken

0 10 20 30
0

1

2

t s

2 2

(a) (b)

FIG. 3. (a) Evolution of the state population for j↓i (black) and
j↑i (gray) for the periodically modulating Hamiltonian equa-
tion (6) with J=Γ ¼ 11.11 and ω=J ¼ 0.84. The effective Floquet
Hamiltonian is in the PT -symmetry unbroken phase. (b) Pop-
ulation for the PT -symmetry broken phase with J=Γ ¼ 6.25 and
ω=J ¼ 1. The solid curves are numerical simulations.

FIG. 4. Phase diagram of the time-dependent Hamiltonian
Eq. (8) obtained from measurement of PJðtÞ − PΓðtÞ. The red
and yellow regions with positive PJðtÞ − PΓðtÞ label the
PT -symmetric phase, while the blue regions with negative value
correspond to the PT -symmetry broken phase. To depict
results with different Γ in the same plot, the unscaled data of
PJðtÞ − PΓðtÞ are shown without multiplying the scaling factor.
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modulating non-Hermitian system of different forms
[32,47–50]. In principle, the same results can also be
obtained for higher resonance points. However, the
PT -symmetry broken regions become very narrow, such
that the phase boundaries are highly sensitive to experi-
mental errors. The ability of precisely determining EPs can
be employed in quantum metrology to measure unknown
time-dependent signals with EP enhancement. A detailed
analysis of this proposal is discussed in Supplemental
Material [41].
Summary.—We implement various types of non-

Hermitian Hamiltonians in a single trapped ion, and
observe rich quantum dynamics to characterize the tran-
sition from the PT -symmetry preserving phase to the
broken phase in a full quantum bit system. We develop a
method to precisely determine the location of exceptional
point without any fitting parameter, and to extract the
eigenvalues and the full density matrix in a unified way.
This protocol works in both static and periodically driving
systems, and thus can be employed to measure arbitrary
unknown perturbation with EP enhancement. The sensi-
tivity may be further improved by increasing ion numbers
[5] or replacing the mapping with actual gain [34].
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