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Mode locking in lasers is a collective effect, where due to a weak coupling a large number of frequency
modes lock their phases to oscillate in unison, forming an ultrashort pulse in time. We demonstrate an
analogous collective effect in coupled parametric oscillators, which we term “pairwise mode locking,”
where many pairs of modes with twin frequencies (symmetric around the center carrier) oscillate
simultaneously with a locked phase sum, while the phases of individual modes remain undefined. Thus,
despite being broadband and multimode, the emission is not pulsed and lacks first-order coherence, while
possessing a very high degree of second-order coherence. Our configuration comprises two coupled
parametric oscillators within identical multimode cavities, where the coupling between the oscillators is
modulated in time at the repetition rate of the cavity modes, with some analogy to active mode locking in
lasers. We demonstrate pairwise mode locking in a radio-frequency experiment, covering over an octave of
bandwidth with approximately 20 resonant mode-locked pairs, filling most of the available bandwidth
between dc and the pump frequency. We accompany our experiment with an analytic model that accounts
for the properties of the coupled parametric oscillators near threshold.
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The parametric oscillator (PO) is a central device in
modern quantum optics—a fundamental type of oscillator
whose internal parameters are modulated by an external
drive, leading to parametric amplification [1–4]. Below the
oscillation threshold, parametric oscillators are extensively
used as sources of squeezed nonclassical light, where the
quantum fluctuations of one quadrature of the field are
reduced below the vacuum (shot-noise) level, at the
expense of increased fluctuations in the orthogonal quad-
rature [5–8], with applications in metrology [9–12], basic
quantum information [13–16], and quantum communica-
tion [17,18]. Parametric oscillators have been proposed
as scalable sources for continuous-variable (CV) cluster
states [19] for CV one-way quantum computation [20].
Configurations of coupled parametric oscillators were
explored in quantum information [19,21,22], quantum
computing [19], and coherent computing [23–26].
In classical nonlinear optics, a parametric amplifier

converts a pump field at frequency ωp into a pair of signal
and idler fields (s and i) such that ωs þ ωi ¼ ωp. Below
threshold, when the process is spontaneously generated by
single pairs of photons, each field appears as thermal noise
[27], but the radiation produced is two-photon coherent
[28–30]; i.e., the spectral phase of each frequency mode is
random, but the sum of phases ϕs þ ϕi ¼ ϕp of all signal-
idler pairs is well defined and highly coherent [31,32].
Normally, nonlinear effects are weak, indicating that intense
pump fields are required to obtain appreciable down-
conversion powers. As such, parametric oscillators, where
the parametric amplifier is incorporated inside a high-finesse

cavity [6], are used to critically reduce the required pump
power. Because of the cavity, the emitted field is spectrally
structured into a discrete comb of frequency modes that are
separated by the cavity repetition rate, where below the
oscillation threshold all available signal-idler pairs emit two-
mode squeezed vacuum, which is therefore highly multi-
mode. Above the oscillation threshold, mode competition
drastically narrows the down-conversion bandwidth, ulti-
mately to a single signal-idler pair [33,34]. Mode competi-
tion also exists in laser, where it pushes the system toward
single-mode operation, yet lasers can demonstrate extremely
broadband oscillation via mode locking [35]. In mode
locking, weak coupling between the modes within the gain
causes an effective phase transition [36,37] from a single-
mode oscillation to a macroscopic number of oscillating
modes with a locked relative phase, collapsing the field in
time to an ultrashort pulse. In a rough sense, it is most
efficient for the laser to store energy within the medium and
then release it in a short intense pulse at the times when the
losses areminimal. This type of mechanism does not exist in
a parametric oscillator, since the nonlinear gain is instanta-
neous and lacks any ability to store energy. Thus, any pump
energy that is not immediately converted to signal-idler
pairs is lost. Thus, it is inefficient for a parametric oscillator
(in the absence of additional nonlinearities, e.g., Kerr
nonlinearity) to support a pulsed oscillation when the pump
is continuous [38].
We present here a novel configuration of two multimode

ac-coupled parametric oscillators that produce a highly
multimode coherent oscillation above threshold. Previously
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we described the coherent dynamics of two coupled single-
mode parametric oscillators, which leads to steady-state
emission of persistent coherent beating [39,40]. Here we
describe how modulation of the coupling causes a macro-
scopic effect of pairwise mode locking—a collective multi-
mode oscillation across all the available modes of the two
coupled cavities, similar to the generation of a broadband
optical frequency comb by mode locking in lasers.
Furthermore, the observed oscillation in this pairwise
mode-locked regime is fundamentally different in both
frequency and time from the simple coherent beating
pattern in the single-mode case. The key concept in our
configuration is the modulation of the coupling between
two parametric oscillators in time at a frequency that is an
integer multiple of the repetition rate ωrep of the cavities
(Fig. 1). This actively couples frequency modes of one
oscillator to neighboring modes of the other oscillator,
inducing a bright and broadband parametric oscillation.
Since the oscillation is above threshold, each mode on its
own is a coherent oscillation with a well-defined phase and
amplitude. However, the phases of different modes are
uncorrelated; thus, the overall oscillation lacks first-order
coherence, but demonstrates a very high degree of second-
order coherence, where all signal-idler pairs are complex

conjugates of each other. Since our oscillation shows high
mutual coherence as pairs of modes but not as single
modes, we term our method “pairwise” mode locking.
We demonstrate our configuration in a radio-frequency

(rf) experiment, using simple off-the-shelf components.
The reason for the choice of a rf platform is that it provides
a simple and nearly ideal platform to explore coherent
phenomena and to directly observe the oscillation in both
time and frequency. In addition, setups that are difficult to
design and implement in optics can sometimes be trivially
implemented in rf, with substantially less resources.
Although the rf experiment is purely classical and cannot
capture quantum effects, such as subvacuum squeezing and
photon counting, it demonstrates well the coherent physics
involved in the coupling above threshold.
Our experimental setup is illustrated in Fig. 2. We

implement the two multimode parametric oscillators by
using two broadband rf cavities, coupled with a time-
dependent coupling mechanism. The oscillators, labeled
PO1 and PO2, are identical in components and demonstrate
very close resonances. In the experiment, remnant dc
coupling is present and locks the resonances together when
coupled. We realize the oscillators with standard rf com-
ponents and 6-m-long coaxial cables in a ring configura-
tion, forming two resonators with a repetition rate
ωrep=2π ≃ 15 MHz. Each oscillator is pumped by a single
frequency pump at ωp=2π ¼ 720 MHz and the coupling

(a)

(b)

FIG. 1. (a) Schematic of a two coupled doubly resonant cavities
with a parametric amplifier (PA) driven by a single-mode pump.
(b) Illustration of the configuration of modes in our system. For
illustration purposes, the two parametric oscillators (PO1 and
PO2) have eight longitudinal modes each labeled by n ¼ 1;…; 8,
equally spaced by ωrep. Bars with the same color indicate the
signal-idler pairs of each oscillator. Diagonal lines between the
bars indicate coupling between the different cavities, whereas
curved lines above and below the bars indicate signal-idler pairs.
The vertical black dashed line marks the central frequency
ω0 ¼ ωp=2. In the experiment, the coupling additionally has a
dc component, couplingmodes of the same frequency between the
cavities (not drawn), which does not change the dynamics
considered here.

FIG. 2. Each oscillator comprises the following components by
Mini-Circuits: The parametric amplifier is realized by a rf
frequency mixer (ZX05-10-S+) denoted by ⊗ and driven at
approximately ωp=2π ¼ 720 MHz by a rf synthesizer (Agilent
N5181A) summed together with a dc offset on a bias tee (ZFBT-
4R2G-FT-+), denoted by ⊕. Since the parametric gain of the
mixer was insufficient to cross oscillation threshold, a broadband
(linear) low-noise amplifier G (ZX60-P105LN) was added to
mitigate some of the losses, but could not induce oscillations on
its own. An output coupler (OC) (ZFDC-15-5) couples the
oscillation out for observation. The time-dependent coupling at
frequency ωrep is represented in the red dashed box. Another
coupler (CC) is used to couple between the oscillators. To control
the amount of power coupled into the other cavity, we pass the
signal through a voltage-controlled variable attenuator imple-
mented using another mixer and inject it into the other oscillator
using a power combiner denoted by ⊕ (ZAPD-2-252-S+).
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between them is achieved using a power splitter, which
injects a controlled amount of signal from each cavity into
the other one. The cavity determines a set of resonant
modes, and by tuning the pump to a resonant mode, we
parametrically amplify all mode pairs that sum up to the
pump-mode frequency. Changing the pump frequency
allows us to control the bandwidth and the resonant modes
to be amplified. The coupled signal is then modulated in
time with a function generator at ωrep, as indicated in Fig. 2.
The intensity and frequency of the modulation dictates
the strength and the range of the coupling. In general, the
coupling could be modulated at any integer multiple of the
repetition rate and not necessarily be monochromatic, and
general coupling could be devised to create different
coupling topologies [36,41].
When the coupling modulation frequency is within few

percent of the repetition rate ωrep, the oscillation becomes
very broadband, filling nearly the entire available band-
width, as shown in Figs. 3(a) and 3(c). Evidently, the modes
oscillate symmetrically around the carrier frequency
ω0 ¼ ωp=2, in pairs with conjugate phases that sum up
to the pump phase all across the oscillation spectrum,
showing high pairwise second-order coherence. In time,
this spectral symmetry indicates that the oscillation is on a
single quadrature of the electric field, i.e., EðjÞðtÞ¼
XðjÞðtÞcosðω0tÞ with no YðjÞ sinðω0tÞ quadrature compo-
nent. Although the oscillation is very broadband, we
measure no correlation between the spectral phases of

different signal-idler pairs [Figs. 3(b) and 3(d)], which is a
clear indication of the lack of first-order coherence between
different modes and therefore also the absence of pulsed
oscillations in time, as can be also directly observed on an
oscilloscope (Fig. 4). Our findings show that our technique
is profoundly different from active mode locking in lasers.
The pairwise coherent oscillation, although broadband, is
first-order incoherent and appears continuous in time, and
thus efficiently utilizes the pump. Despite the conceptual
difference, a useful and elegant analogy between pairwise
and standard mode locking exists. We model our system by
two identical cavities, driven by a pump field that is
resonant on the Nth mode of the oscillators, at frequency
ωp ¼ Nωrep, where N is a positive integer (Fig. 1). For
simplicity, we set ωrep ¼ 1. The pump field is down-
converted into a pair of signal and idler modes, at
frequencies ω and N − ω, respectively. The dynamics of
the modes in the two cavities is captured by the complex

slow-varying amplitudes [40] Að1Þ
ω and Að2Þ

ω , at frequency ω
in cavities PO1 and PO2, respectively. The energy of the
pump is converted into conjugate signal-idler pairs [42,43]:

AðjÞ
ω ¼ ðAðjÞ

N−ωÞ�, for all ω and j ¼ 1, 2. These relations
reflect the fact that the sum of phases of each signal-idler
pair sum up to the pump phase, taken to be zero. In
addition, the lack of first-order coherence for different

modes implies that they are uncorrelated hAðjÞ
ω ðAðj0Þ

ω0 Þ�i ¼
IðjÞω δj;j0δω;ω0 , where we define the steady-state power

spectrum IðjÞω ≡ hjAðjÞ
ω j2i [Figs. 3(b) and 3(c)], where the

expectation value is an ensemble average over all possible
spectral phases. The modes in the two cavities are coupled
by a time-dependent coupling, modulated at mωrep, with
m integer. Here we focus on m ¼ 1 (nearest-neighbor
coupling).

(a) (b)

(c) (d)

FIG. 3. (a),(c) Power spectrum normalized to the noise floor of
the broadband oscillation in PO1 and PO2, respectively. Signal
modes are indicated with red dots and idler modes with green
dots. (b),(d) Spectral phases of the two oscillations in PO1 and
PO2, respectively. Blue dots indicate the sum of the signal (red
dots) and idler (green dots) phases, with the dotted blue line
indicating the pump phase.

FIG. 4. Oscillation in time for PO1 (blue data) and PO2 (green
data), from which the spectral properties (Fig. 3) are extracted. As
evident, no pulsing is observed.
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The dynamics in PO1 and PO2 are described by 2N
coupled first-order ordinary differential equations

d
dt

AðjÞ
ω ¼

�
Gω − β

X
ω0

AðjÞ
N−ω0A

ðjÞ
ω0

�
ðAðjÞ

N−ωÞ�

þ δ

2
½AðkÞ

ωþm þ AðkÞ
ω−m�; ð1Þ

for j ≠ k ¼ 1, 2, where m < ω ≤ N −m with N odd, and
Gω ¼ h=8 − gω=2 is the net gain per round-trip of the ω
mode, dictated by the parametric gain h and the loss term
gω. Gain saturation due to the pump depletion is denoted by
β. The strength of the coupling between modeω in PO1 and
modes ω�m in PO2 is denoted by δ. The first terms on the
right-hand side of Eq. (1) describe the parametric ampli-
fication for each individual signal-idler pair at frequency ω
and N − ω. In the uncoupled case (δ ¼ 0), these indepen-
dent pairs compete for the gain resources and only the one
associated with the largest net gain Gω oscillates. However,
when δ ≠ 0, the coupling connects all pairs at different
frequencies. Consequentially, the most efficient mode is
now a broadband combination of all signal-idler pairs,
whose spectrum approximately mimics the spectral loss
function. To show this theoretically, we derive from

Eq. (1) an equation for the spectrum IðjÞω of the oscillation
near threshold, where gain saturation is negligible (see
Supplemental Material [44])

δ2ω2
rep

2

d2

dω2
IðjÞω þ ð4G2

ω þ 2δ2ÞIðjÞω ¼ 0; ð2Þ

in a direct analogy to the spectral amplitude of pulses in
active mode locking of lasers [35]. To solve Eq. (2), we
assume a simple parabolic dependence of the spectral net
gain G2

ω ≈G2
0 − ω2=2σ2, where σ is the gain bandwidth,

which yields from Eq. (2) a Gaussian spectrum IðjÞω ∼
e−ω

2=Δ2

with spectral width Δ2 ¼ δωrepσ and steady-state
gain of G2

0 ¼ δωrep=4σ − δ2=2, similar to active mode
locking in lasers. The parabolic spectral gain was assumed
here for simplicity of the analytic solution. Other gain
profiles are possible as well, leading to more general
spectral forms of the pulses, but keeping the bandwidth
discussed here.
Let us consider the implications of the fact that the

oscillation is broadband and on a single quadrature due to
the phase-dependent amplification. Normally, the quadra-
ture content of a signal is evaluated by homodyning against
a local oscillator (LO) at the center carrier frequency ω0,
acting as a quadrature reference, so for example, XðjÞðtÞ ¼
hEðjÞðtÞ cosðω0tÞi, where the angle brackets denote aver-
aging over fast-varying terms. Here, since the signals
EðjÞðtÞ are broadband, so is the homodyne result. In
frequency domain, the quadrature content is easily seen

as the interference of pairs of modes XðjÞ
Ω ¼ 1

2
ðAðjÞ

N=2þΩ þ
A�ðjÞ
N=2−ΩÞ and YðjÞ

Ω ¼ 1=2iðAðjÞ
N=2−Ω − A�ðjÞ

N=2−ΩÞ. In Fig. 5(a)
we show the spectrum of the homodyne output for two LO
phases—the amplified (jXΩj2) and the attenuated (jYΩj2)
quadratures, with > 20 dB difference—a clear indication
of the phase-dependent amplification. Each peak in the
homodyne spectrum corresponds to a different frequency
pair, which interfere constructively or destructively depend-
ing on the local oscillator phase. The strong phase
dependence of the spectrum is a direct result of the strong
second coherence of the signal; i.e., the sum of phases of
each signal-idler pair is highly correlated and equal to half
the pump phase.
The quadrature reference does not need to be narrow

band [45]. Since both signals of PO1 and PO2 are of a
single quadrature, they could serve as local oscillators for
one another XτðtÞ ¼ hEð1ÞðtÞEð2Þðtþ τÞi, where the delay
between them determines the measured quadrature.
Figure 5(b) shows the spectrum of the cross-correlation
between the two oscillators, for two different delays,
measuring the amplified (jXΩj2) and attenuated (jYΩj2)
quadrature spectra. Mixing the two outputs also shows a
clear difference of > 15 dB between the two quadrature
phases, but its structure is inherently different from the
standard homodyne with a single frequency LO. Each
spectral component is due to the mixing between many
different frequency modes, all with the same spectral
separation. For example, the peak at dc is due to the
mixing between all same frequency modes, the peak at ωrep

is due to the mixing between modes one repetition rate
apart, and so on. Every frequency within this cross
homodyne is a collective result of mixing the entire combs
with the relevant frequency offset. We should emphasize
that, although our results demonstrate the difference in
power between the two quadratures, they do not demon-
strate squeezing, but only the phase-dependent nature of the
parametric amplifier. Characterization of the squeezing
requires comparing the attenuated quadrature noise to
the device noise floor, which is not demonstrated.

FIG. 5. (a) The amplified (jXΩj2, orange) and attenuated (jYΩj2,
blue) quadrature spectra of the homodyne signal obtained by
multiplying the oscillator signal with a phase-coherent LO at half
the pump frequency. (b) Spectra of the product signal obtained by
multiplying the oscillators together.
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In summary, we presented a new kind of broadband
parametric source, comprising of a pair of parametric
oscillators, coupled with a time-modulated coupling. We
experimentally demonstrated that the generated oscillation
is very broadband, yet lacks first-order coherence—the
different frequency pairs are distinct, and their phases are
unconstrained and uncorrelated. This source of bright,
broadband parametric radiation can be a key enabler for
a variety of applications, e.g., quantum information [19,21],
communication protocols [13,17,46,47], bright quantum
frequency combs [48–50], CV cluster states sources
[19,51–53], noise-radar schemes [54–56], and quantum
metrology [9–12,57,58]. From a more fundamental point of
view, this is a source of radiation that is conceptually
different from lasers [59] and standard parametric oscil-
lators [60]. On the one hand, unlike a mode-locked laser,
the different modes are not correlated in phase. On the other
hand, unlike squeezed vacuum, the oscillation is not
incoherent noise, but rather a combination of many
coherent, though uncorrelated, frequency pairs.
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