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Pseudo-entropy is an interesting quantity with a simple gravity dual, which generalizes entanglement
entropy such that it depends on both an initial and a final state. Here we reveal the basic properties of
pseudo-entropy in quantum field theories by numerically calculating this quantity for a set of two-
dimensional free-scalar field theories and the Ising spin chain. We extend the Gaussian method for pseudo-
entropy in free-scalar theories with two parameters: mass m and dynamical exponent z. This computation
finds two novel properties of pseudo-entropy which we conjecture to be universal in field theories, in
addition to an area law behavior. One is a saturation behavior and the other one is nonpositivity of the
difference between pseudo-entropy and averaged entanglement entropy. Moreover, our numerical results
for the Ising chain imply that pseudo-entropy can play a role as a new quantum order parameter which
detects whether two states are in the same quantum phase or not.
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Introduction.—Entanglement entropy in quantum
many-body systems plays significant roles in various
subjects of theoretical physics, such as condensed matter
physics [1–3], particle physics [4–8], and gravitational
physics [9–12]. In the anti–de Sitter/conformal field
theory (AdS/CFT) correspondence, [13], entanglement
entropy is equal to the area of a minimal surface [14,15].
This directly relates geometric structures in quantum
many-body systems to those of spacetimes in gravitational
theories.
Recently, a new geometric connection between a

minimal area surface and a novel quantity, called
pseudo-entropy, has been found via AdS/CFT [16].
The pseudo-entropy is a generalization of entanglement
entropy to a transition between the initial state jψ1i
and the final state jψ2i. First we introduce the transition
matrix τ1j2:

τ1j2 ¼ jψ1ihψ2j
hψ2jψ1i

: ð1Þ

We divide the total Hilbert space Htot into two parts A
and B as we do so to define entanglement entropy; i.e.,
Htot ¼ HA ⊗ HB. We introduce the reduced transition

matrix τ1j2A ¼ TrB½τ1j2� by tracing out HB. Finally,
pseudo-entropy is defined by

Sðτ1j2A Þ ¼ −Tr½τ1j2A log τ1j2A �: ð2Þ

Note that when jψ1i ¼ jψ2i, this quantity is equal to the
ordinary entanglement entropy. Even though this expression
(2) looks like the von Neumann entropy, this takes complex
values in general because τ1j2A is no longer Hermitian.
However, when we construct the initial and final state by
a Euclidean path integral with a real valued action, Sðτ1j2A Þ
turns out to be positive [16], which is the case we will focus
on in this Letter. Moreover, it was found that the pseudo-
entropy for holographic CFTs can be computed as the areas
of minimal surfaces in time-dependent Euclidean asymp-
totically anti–de Sitter backgrounds [16]. Such a time-
dependent Euclidean space is dual to an inner product
hψ2jψ1i via AdS/CFT [13]. In addition to the above
importance in gravity, pseudo-entropy has an intriguing
interpretation from the quantum information viewpoint, as
a measure of quantum entanglement for intermediate states
between the initial and the final state [16]. In this Letter we
would like to pursue the next obviously important task,
namely, to uncover basic properties of pseudo-entropy in
quantum many-body systems, including quantum field
theories and condensed matter systems. For technical details
used in this Letter, refer to [17]
Free-scalar field theory.—Consider free-scalar field

theory in two dimensions as our first example. We take
into account two parameters in the free-scalar theory, which
are the mass m and the dynamical exponent z. At z ¼ 1,
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this describes the relativistic scalar field, while for z > 1, it
is called Lifshitz scalar field, which is invariant under the
Lifshitz scaling symmetry t → λzt, x → λx in the m → 0
limit. Its Hamiltonian is written as

H ¼ 1

2

Z
dx½π2 þ ð∂z

xϕÞ2 þm2zϕ2�; ð3Þ

where ϕ and π are the scalar field and its momentum.
In order to do concrete calculations, we consider

its lattice regularization [18–21] given by the
Hamiltonian:

H ¼
XN
i¼1

�
π2i
2
þm2z

2
ϕ2
n þ

1

2

�Xz

k¼0

ð−1Þzþk

�
z

k

�
ϕi−1þk

�
2
�
:

where N is the total lattice size. We define NA to be the
lattice size of subsystem A. These models are straight-
forwardly generalized to higher dimensions [18,20].
It is known that we can calculate the entanglement entropy

in free-field theories from correlation functions on A when a
quantum state is described by a Gaussian wave functional
[22]. Even though for pseudo-entropy we consider a transition
matrix instead of a density matrix, we can remarkably extend
this Gaussian calculation via an analytic continuation. This
makes numerical computations of pseudo-entropy possible,
playing a major role below.
Two point functions of ϕ and π compose the 2NA × 2NA

matrix Γ:

Γ ¼
�

X R

RT P

�
; ð4Þ

where

Xij ¼ Tr½ϕiϕjτ
1j2
A �; Pij ¼ Tr½πiπjτ1j2A �;

Rij ¼
1

2
Tr½ðϕiπj þ πiϕjÞτ1j2A �: ð5Þ

As opposed to the standard case where τ1j2A is given by a
Hermitian density matrix ρA, we find that the matrixR takes
complex values, though X and P are real symmetric
matrices. Therefore, we consider a complexified symplectic
transformation Spð2NA;CÞ to diagonalize Γ into the form

Γ →

�
ν 0

0 ν

�
; ð6Þ

where ν is a diagonal matrix and we write its diagonal
components as νi ¼ 1

2
cothðϵi=2Þ [23]. Practically, we can

obtain νi from the fact that the eigenvalues of the following
rearranged matrix are �νi:

�
iRT iP

−iX −iR

�
: ð7Þ

In the examples which we focus on below, νi and ϵi
always take positive real values. Finally, the pseudo-
entropy is computed by the formula

Sðτ1j2A Þ ¼
XNA

i¼1

�
ϵi

eϵi − 1
− logð1 − e−ϵiÞ

�
¼

XNA

i¼1

��
νi þ

1

2

�
log

�
νi þ

1

2

�
−
�
νi −

1

2

�
log

�
νi −

1

2

��
:

This Gaussian calculation of pseudo-entropy can also be
justified by a more direct approach, the operator method
[25,26]. Though it has not been proven rigorously that
performing the analytic continuation used in this Gaussian
calculation is possible, we can directly derive the same
formula by the operator method without using the analytic
continuation. In our analysis, we take jψ1i and jψ2i to be
ground states for various values of the mass m and
dynamical exponent z, which we denote by ðm1; z1Þ and
ðm2; z2Þ.
Let us first start with the relativistic setups z1 ¼ z2 ¼ 1

and m1 ≠ m2. We take the total system to be a circle length
L and define a subsystem A to be a length l interval on this
circle. We write the UV cutoff (lattice spacing) as ϵ such
that L ¼ Nϵ and l ¼ NAϵ. Our numerical analysis reveals
the general behavior of pseudo-entropy.

Sðτ1j2A Þ ¼ 1

3
log

�
L
πϵ

sin

�
πl
L

��
þ fðm1; m2; L; lÞ; ð8Þ

where the first term on the right-hand side coincides with
the known behavior of entanglement entropy in two-
dimensional CFTwith the central charge c ¼ 1 [3,6], while
the second term is a constant term which depends on the
relevant parameters. For confirmation of this behavior, refer
to Fig. 1, where the first logarithmic term in Eq. (8) gives a

FIG. 1. Sðτ1j2A Þ as a function of the size of the subsytem
NA. We set N¼200 and z1¼z2¼1. The curves are
c1ln½ðN=πÞsinðπNA=NÞ�þc0, where c1 ≃ 0.3333 and 6.028 <
c0 < 6.453.
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dominant l dependence for small masses. This shows that
the leading logarithmic divergence, which is equivalent to
the area law, is robust for the pseudo-entropy. For small
values of masses, our numerical calculations determine
analytical structures of the function fðm1; m2; L; lÞ. When
we consider the almost massless limit m1;2L ≪ 1, we have

fðm1; m2; L; lÞ ≃ −
1

2
log

�
m1 þm2

2
L

�
: ð9Þ

This logarithmic behavior is due to the zero mode of scalar
field and the above formula agrees with the known result of
entanglement entropy in Ref. [27]. When the mass is small
such thatm1;2L ∼ 1 andm1;2l ≪ 1, we can semianalytically
[28] find the l dependence,

fðm1; m2; L; lÞ

≃
1

2
log

�
−
m2

1 log½m1l� −m2
2 log½m2l�

m2
1 −m2

2

�
þ f0ðm1; m2; LÞ;

where the final term f0 does not depend on l. This
expression again reproduces the known 1

2
log½− logðmlÞ�

term [29] in the entanglement entropy.
Now we turn to the dynamical exponent ðz1; z2Þ to

describe the Lifshitz scalar theory. When z1 ¼ z2, the
pseudo-entropy gets larger as the dynamical exponent
increases, as in the upper graph of Fig. 2. When we fix
z1 and increase z2, the pseudo-entropy approaches a certain
finite value, as can be seen from the lower graph in Fig. 2.
We call this phenomenon saturation. The saturation occurs
when we fix jψ1i and consider a limit where the entangle-
ment of jψ2i gets larger. The two graphs in Fig. 3
demonstrate the saturations when we take different two

limits of m2 → 0 and z2 → ∞, respectively. This saturation
in our free-scalar field theory implies that the behavior of
pseudo-entropy qualitatively looks like

Sðτ1j2A Þ ∼min½Sðρ1AÞ; Sðρ2AÞ�: ð10Þ

From our numerical results, we can find one more basic
property of pseudo-entropy by introducing the difference:

ΔS12 ≡ Sðτ1j2A Þ − Sðρ1AÞ þ Sðρ2AÞ
2

: ð11Þ

If jψ1i and jψ2i are very close to a state jψ0i, such that

δτA ¼ τ1j2A − ρ0A is very small, then we can derive a first law
like relation:

Sðτ1j2A Þ − Sðρ0AÞ ≃
hψ2jHAjψ1i
hψ2jψ1i

þOððδτAÞ2Þ; ð12Þ

as in the first law of entanglement entropy [30–32].
Here we introduced the modular Hamiltonian HA ¼
− log ρ0A − Sðρ0AÞ. The linear combination (11) is special
such that it cancels out in this linear difference (12), leaving
only the quadratic order as ΔS12 ¼ OððδτAÞ2Þ.
In general, this quadratic difference ΔS12 is not guar-

anteed to be positive definite. Indeed, we can confirm that
both signs are possible even in a 2-qubit example. However,
in all of our numerical results in the free-scalar field theory
(3), we observe its nonpositivity ΔS12 ≤ 0 when we vary
the masses and dynamical exponents, as depicted in Fig. 4.
Also, in the small mass limit (9), this nonpositivity is
satisfied.

FIG. 2. The upper plot shows the pseudo-entropy as a function
of the subsystem size NA when we chose m1 ¼ 10−3 and
m2 ¼ 10−5 for various values of z1 ¼ z2. The lower plot shows
the pseudo-entropy when we set z1 ¼ 3 and m1 ¼ m2 ¼ 10−5.
We chose the total system N ¼ 100.

FIG. 3. The upper graph shows the pseudo-entropy as a
function of m2 when we set z1 ¼ 1 and m1 ¼ 10−5. The lower
graph depicts the pseudo-entropy as a function of z2 when we set
m1 ¼ m2 ¼ 10−5.We chose NA ¼ 50 and N ¼ ∞.
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Pseudo-entropy in perturbed CFT.—To investigate the
behavior of pseudo-entropy more, consider a perturbation
in a two-dimensional CFT. We assume that the subsystem A
is a length l interval and the CFT is defined on R2. The
perturbation is expressed as λ

R
dtdxOðt; xÞ, where O is a

primary operator and λ is a small perturbation parameter.
We choose jψ1i as the original CFT vacuum and jψ2i is the
new vacuum obtained by this perturbation. Since one point
function vanishes in a CFT, there is no OðλÞ term
in the differences Sðτ1j2A Þ − Sðρ1AÞ. Moreover, at the order
Oðλ2Þ, we can show Sðτ1j2A Þ − Sðρ1AÞ ≤ 0. This result is
universal because it only involves two point functions in
a CFT.
In particular, if we consider an exactly marginal pertur-

bation, we find that the coefficient of the logarithmically
divergent terms is changed:

Sðτ1j2A Þ ¼ c
3
fðλÞ log l

ϵ
þ const; ð13Þ

The conformal perturbation shows fðλÞ ¼ 1þ gλ2 þ
Oðλ3Þ with g < 0 in the λ → 0 limit. We can also derive
the same behavior from the holographic calculation of
pseudo-entropy in Janus solutions [33–38]. In this way, we
can confirm ΔS12 ≤ 0 for exactly marginal perturbations.
Pseudo-entropy in Ising model.—As another class of

basic quantum many-body systems, we would like to
consider a transverse Ising spin chain model. In the
continuum limit near the critical point, this model is known
to be equivalent to the two-dimensional free-fermion CFT
[39]. Its Hamiltonian can be written as

H ¼ −J
XN−1

i¼0

σziσ
z
iþ1 − h

XN−1

i¼0

σxi ; ð14Þ

where the spins are be labeled by i ¼ 0; 1; 2;…; N − 1 and
the σzi is Pauli operator on i with eigenvalues �1. We
impose the periodic boundary condition. Note that the
quantum critical point is situated at J ¼ h in the continuum
limit, where J > h is the ferromagnetic phase, while J < h
describes the paramagnetic phase.
We calculate the pseudo-entropy Sðτ1j2A Þ by choosing

jψ1i and jψ2i to be the ground states for ðJ; hÞ ¼ ðJ1; h1Þ
and ðJ2; h2Þ, respectively. The subsystem A is assumed to
be a single interval with NA spins. We show numerical
results in Fig. 5 (we used the PYTHON package QUSPIN [40]
in our computation).
From the numerical results, we can observe the satu-

ration Sðτ1j2A Þ ≃ log 2 in the J2 → ∞ limit when J1 > 1.
Moreover, we can confirm that the difference (11) satisfies
ΔS12 ≤ 0 when ðJ1; h1Þ and ðJ2; h2Þ are in the same phase,
i.e., ðJ1 − h1ÞðJ2 − h2Þ > 0. However, we can have
ΔS12 > 0 when they belong to two different phases, i.e.,
ðJ1 − h1ÞðJ2 − h2Þ < 0. This implies that the sign of the
difference ΔS12 can provide an order parameter which tells
us whether the two states jψ1i and jψ2i are in the same
phase or not. This result is also expected to hold when
considering two ground states of 2D free Majorana fermion
theories with different mass as long as they belong to the
same phase [41], since free Majorana fermion can be
obtained as a scaling limit of transverse Ising chain after
Jordan-Wigner transformations.
Discussions.—In this Letter we have uncovered basic

properties of pseudo-entropy in quantum field theories by
focusing on numerical calculations in a class of free-scalar
field theories and the Ising spin chain. We would like to

FIG. 4. The plots of the difference ΔS12 as a function of m2 −
m1 (upper) and z2 (lower). We set m1 ¼ 10−5 and z1 ¼ z2 in the
upper graph. We chose m1 ¼ m2 ¼ 10−5 in the lower graph. FIG. 5. Pseudo-entropy and average of entanglement for a

single interval. Here, we choose N ¼ 16, NA ¼ 8, h1 ¼ h2 ¼ 1.
We set J1 ¼ 2 (upper left), J1 ¼ 1 (upper right), and J1 ¼ 1=2
(lower). The horizontal axis is the value of J2. The blue dots show
the pseudo-entropy SðT 1j2

A Þ and the orange dots show the average
of the entanglement entropy ½Sðρ1AÞ þ Sðρ2AÞ�=2.
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conjecture that the properties, area law, saturation, and
nonpositivity of ΔS12, which we found for free-scalar field
theories, will be universal also for any quantum field
theory. It will be an important future problem to study
pseudo-entropy in a broader class of field theories and test
the above properties. Moreover, our results for Ising spin
chain imply that we can classify different phases in
quantum many-body systems from the calculations of
pseudo-entropy. This originates from our expectation that
the pseudo-entropy helps us to probe the difference of
structures of quantum entanglement between two states.
One obvious future direction will be to analyze the pseudo-
entropy in topological phases, to see if it can play a role of
topological order parameter.
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