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The transition between ergodic and many-body localization (MBL) phases lies at the heart of
understanding quantum thermalization of many-body systems. Here, we predict a many-body critical
(MBC) phase with finite-size scaling analysis in the one-dimensional extended Aubry-André-Harper-
Hubbard model, which is different from both the ergodic phase and MBL phase, implying that the quantum
system hosts three different fundamental phases in the thermodynamic limit. The level statistics in the MBC
phase are well characterized by the so-called critical statistics, and the wave functions exhibit deep
multifractal behavior only in the critical region. We further study the half-chain entanglement entropy and
thermalization properties and show that the former, in the MBC phase, manifest a volume law scaling,
while the many-body states violate the eigenstate thermalization hypothesis. The results are confirmed by
the state-of-the-art numerical calculations with system size up to L ¼ 22. This work unveils a novel many-
body phase which is extended but nonthermal.
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Introduction.—In the past decade, the eigenstate ther-
malization hypothesis (ETH) [1–4] has become an essential
theoretical underpinning for understanding quantum ther-
malization physics. Eigenstates in an ergodic phase obey
the ETH, while including disorder in interacting systems
can lead to the many-body localization (MBL) if the
disorder strength is strong enough. TheMBL phase violates
ETH, i.e., the states in MBL cannot thermalize. The
existence of MBL phases has been well established in
one-dimensional interacting systems with random disorder
[1,5–11] or incommensurate potential [12–24] and has also
been observed in interacting ultracold atomic gases trapped
in incommensurate optical lattices [25–29].
The nature of the transition from an ergodic phase to

MBL remains an active area of research. The entanglement
entropy (EE) of eigenstates in an ergodic phase follows the
volume law, but in MBL obeys an area law [30–32]. In
transition between such two phases, the EE changes in a
singular way, rendering an eigenstate phase transition. On
the other hand, in view of the long-time dynamics in the
ergodic phase and MBL phase [33–38], a dynamical phase
transition is manifested between the two phases. The
critical features of the transition are also examined in the
recent works [21,30,31,39–45] to reveal the nature of
the critical points. In particular, an outstanding question
is whether there exists some sort of critical phase, other
than the critical point in the phase transition. The results
based on the finite-size analyses showed that a quantum

critical region in the finite-size interacting system vanishes
in the thermodynamic limit [21,43,46–52], for which the
emergence of a many-body critical (MBC) phase is yet
illusive. To confirm the existence of such a critical phase
which is different from both the ergodic and MBL phases is
undoubtedly important in understanding the quantum
thermalization physics of many body disorder systems.
In this work, we show that a MBC phase can exist in

thermodynamic limit in an extended Harper model [53–56]
with Hubbard interaction. Employing exact diagonalization
(ED) to obtain various diagnostics such as level statistics,
multifractality, EE, and thermalization properties, we show,
with finite-size scaling analysis, the existence of this new
phase of quantum matter which is different from the ergodic
and MBL phases and is confirmed with the state-of-the-art
numerical study. The level statistics is shown to follow the
critical statistics [57–62], and the wave functions exhibit
deepmultifractal behaviors.Moreover, the eigenstates in this
critical phase violate the ETH, but their EE follows a volume
law, so this MBC phase is an extended nonthermal phase.
Model and phase diagram.—We start with the extended

Harper model from the Hamiltonian [53–56]

H0 ¼
X
j
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�
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where cj (c
†
j ) is the fermion annihilation (creation) operator

at the site j, μ represents the amplitude of the modulation in
the off-diagonal hopping, V is the strength of the on-site
incommensurate potential, and δ is an arbitrary phase shift.
We take α ¼ ð ffiffiffi

5
p

− 1Þ=2, then both the on-site potential
and the hopping amplitude between the nearest-neighbor-
ing (NN) lattice sites are incommensurate. Figure 1(a)
shows the phase diagram of this system [53–56], where
the regions I, II, and III correspond to the single-particle
extended, critical, and localized phases, respectively. When
μ ¼ 0, this model is reduced to the Aubry-André-Harper
model [63] and V ¼ 2 is the transition point from the
extended to the localized phases.
Then, we add the NN repulsive Hubbard interaction and

the total Hamiltonian is described by

H ¼ H0 þU
X
j

njnjþ1; ð2Þ

where nj ¼ c†jcj is the fermion number operator, and U
represents the interaction strength. We consider the half-
filling case, with the numbers of fermions N and the lattice
sites L being fixed to N=L ¼ 1=2. Since the sample-to-
sample fluctuations in quasiperiodic models are much
weaker than those in random disorder models, the number
of samples used ranges from 500 to 10 for our study, where
a sample is specified by choosing an initial phase δ. We
obtain the eigenstates by ED under open boundary con-
dition, and, unless otherwise stated, focus on the states in
the middle one-third of the spectrum for L ≤ 18 and middle
100 states for L ¼ 20, 22 based on the state-of-the-art
numerical technique [see, also, Supplemental Material
(SM) [64] ]. The main results are shown in Fig. 1(b), where
the interaction is taken U ¼ 1 as an example. Three funda-
mental phases, i.e., the ergodic phase (I), the MBL (III), and
the MBC phase (II), which constitutes the most important

prediction in this work, are uncovered. Below, we show the
phase diagramand further explore the fundamental properties
of the MBC phase.
Energy level statistics and multifractal analysis.—The

MBC phase in region II in Fig. 1(b) can be identified
from the energy level statistics and multifractal behavior.
We define the energy spacing as δn ¼ Enþ1 − En, where
the eigenvalues En have been listed in ascending order.
Then, we can obtain the ratio of adjacent gaps as rn ¼
½minðδn; δnþ1Þ=maxðδn; δnþ1Þ� and average it over all gaps
and samples. For the system in the ergodic phase, its level
statistics follow Gaussian-orthogonal ensemble (GOE):
PG¼ðπ=2Þðδ=hδiÞexpð−πδ2=4hδi2Þ, where hδi is the mean
spacing and hri converges to 0.529. In the MBL phase, the
level statistics are Poisson: PP ¼ ð1=hδiÞ expð−δ=hδiÞ and
hri ≈ 0.387 [6,7]. The larger hri in the ergodic phase tells
that the spectrum of the ergodic phase is more uniform
than that in the MBL phase. However, the value of hri in
region II of Fig. 1(b) is neither 0.387 nor 0.529 (see more
details in the SM [64]), implying that the level statistics are
neither GOE nor Poisson.
To characterize the statistical properties of the energy

spectra in region II, we consider the level number variance
Σ2ðMÞ, which is given by: Σ2½MðϵÞ� ¼ hM2ðϵÞi− hMðϵÞi2,
with hMðϵÞi counting the number of levels in a strip of
width ϵ on the unfolded scale [47,72,73]. The unfolding
procedure is using a smooth function to fit the staircase
function ηðEÞ ¼ P

m ΘðE − EmÞ, which counts the number
of eigenvalues less than and equal to E (see SM [64]). The
angular bracket denotes the average over different regions
of the mid-one-third spectrum and different samples. In the
MBL phase, the spectrum has no correlations, and there-
fore, the number variance is exactly linear with slope one,
i.e, Σ2ðMÞ ¼ M (black solid curve in Fig. 2). The spectrum
in the ergodic phase, as mentioned above, is more uniform
due to the level repulsion, so the number variance displays a
slow logarithmic growth: Σ2ðMÞ ≈ ð2=π2Þ lnð2πMÞ (red
solid curve in Fig. 2) [47,74,75]. The number variance in
the MBC phase is qualitatively different, which is linear
Σ2ðMÞ ∼ χM but with a slope less than one χ < 1, as given
in Fig. 2. In order to see it clearly, we redisplay the number
variance of the critical regime in the inset and confirm that
the number variances are asymptotically linear with slopes
1=2 < χ < 1. The slopes are size insensitive and signify the
critical statistics [64,76]. The number variance in the MBC
phase is intermediate between the ergodic phase and the
MBL phase, which means that the uniformity and the
strength of level repulsions of the spectrum are also in
between.
We further show the MBC phase through the multifractal

analysis based on the system size from 12 to L ¼ 22, and
the analysis can be performed by examining the fractal
dimension a [77,78], defined for each eigenstate jni as
a ¼ − lnhPj jψ jj4i= lnD with D → ∞, where ψ j is the
wave function coefficient of the eigenstate jni in the
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FIG. 1. Main results. (a) Noninteracting phase diagram. The
regions I, II, and III correspond to extended, critical, and localized
phases, respectively. (b) Phase diagram for the extended inter-
acting Harper model with U ¼ 1, which contains three phases:
the ergodic phase (region I), the MBL phase (region III) and the
MBC phase (region II). The transition points (marked by gray
dots) can be obtained with finite-size scaling analyses for EE and
level statistics, and the phase boundaries are fitted by corre-
sponding curves. Only in the MBC phase of region II, the level
statistics follow the critical statistics and the many-body wave
functions are multifractal.
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computational basis fjjig, given by ψ j ¼ hjjni, hPj jψ jj4i
is the averaged inverse participation ratio (IPR) [79], and
D ¼ ðLNÞ is the Hilbert space size. Figure 3(a) shows the
fractal dimensions a, which is obtained by using lnhIPRi ¼
a lnDþ c to fit lnhIPRi and lnD with different sizes,
where c is a constant. We see that a ≈ 1 in the ergodic
phase, and a is near 0 (i.e., weak multifractality [52]),
which is a consequence of the finite-size effect (see more
details in the SM [64]), or a ¼ 0 within error bars (i.e.,
absence of multifractal behavior) [46,80–82] in the MBL
phase. In contrast, the MBC phase is deeply multifractal,
with the fractal dimension a being finite and not close to 0,
nor 1, providing a strong evidence for the existence of a
new phase different from the ergodic and MBL phases.

Further, more careful analysis shows a logarithmic sub-
leading correction to the scaling of hIPRi, i.e., − lnhIPRi ¼
a lnDþ b lnðlnDÞ þ oðlnDÞ. We find that b is negative,
negative, and positive for the ergodic, MBC, and MBL
phases, respectively [Fig. 3(b)], as summarized in Table I.
The critical level statistics and deep multifractal

behavior of many-body wave functions show that region II
in Fig. 1(b) is a MBC phase, qualitatively different from
both the ergodic and MBL phases. An intuitive under-
standing for the existence of the MBC phase with inter-
actions is given in the SM by connecting the many-body
wave function and single-particle orbits [64]. Next, we
proceed to study the EE and thermalization with finite-size
scaling analyses, which confirm the critical points of phase
transition in the thermodynamic limit and give character-
istic features of the MBC phase.
Finite-size scaling and entanglement entropy.—The EE

is an important resource for exploring the critical behaviors
and the localization features of many-body states based
on finite-size scaling analysis. For a correlated system, the
EE is obtained by S ¼ −

P
i λi ln λi, where λi is the ith

eigenvalue of a reduced density matrix, which can be
obtained by tracing out half of this system. We find that
different energy windows have little effect on the EE in the
ergodic and MBL phases (see more details in the SM [64]),
so we can consider the average EE hSi averaged over the
mid-one-third states for L ¼ 16, 18 and over the mid-100
states for L ¼ 20, 22, as showed in Fig. 4. From Fig. 4(a),
one can see that the average EE follows a volume law in the
ergodic phase while it decreases to a constant independent
of L in the deep MBL phase, which fulfills an area law.
Unlike the MBL, we show, in Fig. 4(b), that the average
EE follows a volume law when the system is the critical
phase. The EE in the ergodic phase gives the maximum EE
well, i.e.,hSi ¼ lnΩ ¼ ln 2L=2 ¼ L

2
ln 2, whereΩ is the total

number of states of the half-chain. The average EE in the
MBC phase, however, is clearly less than the maximum EE,
so the MBC phase is extended but nonergodic. For a more
precise study, we perform a finite-size scaling analysis for
the EE which is rescaled by the page value ST ¼
0.5½L ln 2 − 1� [83,84], as shown in Figs. 4(c) and 4(d),
where the results are fit to hS=STi ¼ f½ðV − VcÞL1=ν� with
fixed μ ¼ 0.5, and hS=STi ¼ g½ðμ − μcÞL1=ν� with fixed
V ¼ 1, respectively. Here, Vc and μc denote the transition
point from the ergodic phase to the MBL and MBC phases,
respectively, and ν is the associated critical exponent. In
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FIG. 2. Number variance Σ2ðMÞ for different incommensurate
potential strengths V with fixed μ ¼ 0.5, and for different μ with
fixed V ¼ 1. In the ergodic phase and when M is small, Σ2ðMÞ
shows a slow logarithmic increase (red solid curve). In the MBL
phase, Σ2ðMÞ is linear with slope one (black solid curve). Inset:
Number variance in the critical regime and near the transition
point. They are linear with slopes 1=2 < χ < 1, which is a
signature of critical statistics. Here, we fix the number
of sites L ¼ 16.

FIG. 3. (a) Fractal dimension a as a function of V and μ.
(b) − lnhIPRi as a function of lnD with system size varying from
L ¼ 12 to L ¼ 22. The fitting coefficients are a ¼ 1.11� 0.15,
b ¼ −3.48� 1.02 for V ¼ 2, μ ¼ 0.5 (in the ergodic phase),
a ¼ 0.0514� 0.0668, b ¼ 0.21� 0.04 for μ ¼ 0.5, V ¼ 5 (in
the MBL phase, the range of a covers 0) and a ¼ 0.51� 0.08,
b ¼ −0.77� 0.28 for V ¼ 1, μ ¼ 1.2 (in the MBC phase).

TABLE I. A comparison of the coefficients a and b in different
phases.

Coefficients Phases

a ≈ 1, b < 0 Ergodic phase
a is far from 0 and 1, b < 0 MBC phase
a is near 0 or a ¼ 0, b > 0 MBL phase

PHYSICAL REVIEW LETTERS 126, 080602 (2021)

080602-3



confirming the existence of phase transition, it is sufficient
to perform the finite-size analysis only in one side of
the critical points, say with μ < μc. The results of the
best fit are (c) Vc ¼ 3.08� 0.05 and ν ¼ 0.71� 0.06 and
(d) μc ¼ 1.03� 0.05 and ν ¼ 0.32� 0.03, which are
doubly confirmed with the same results obtained by
performing the finite-size scaling analyses for energy level
statistics [64]. The critical exponent ν can be determined
similarly for generic parameters V and μ near the phase
boundaries, and exhibits a variation range in the whole
phase boundaries with different Vc and μc, which is typical
for disordered systems. The approximate ranges are

ν ¼

8>><
>>:

0.6ð0Þ ∼ 0.8ð2Þ; for I → III;

0.3ð5Þ ∼ 0.4ð7Þ; for I → II;

0.6ð5Þ ∼ 0.8ð4Þ; for II → III;

ð3Þ

where I, II, and III are the ergodic, MBC, and MBL phases,
respectively.
Note that a finite-size system may exhibit a critical

region near the transition point between the ergodic and
MBL phases [39–43] when the system size is smaller than
the correlation length (for the ergodic phase) or localization
length (for the MBL phase). The critical region vanishes in
the thermodynamic limit after performing finite-size analy-
ses [43]. In contrast, from the finite-size scaling analysis,
we confirm that the MBC phase predicted here exists in the
thermodynamic limit.
Thermalization properties.—Finally, we study the ther-

malization properties of the MBC phase. For this, we
consider the average deviation of the half-chain particle-
number distribution from the half-number (N=2) of particles,
which can characterize the thermalization of the system and

is defined byT¼f½1=ðD2−D1Þ�
PD2

m¼D1
½OðEmÞ−N=2�2g1=2,

withmany-body eigenstates of eigenvalueEm being summed
over. Here, the observable OðEÞ ¼ PL=2

j¼1hψEjnjjψEi quan-
tifies the number of particles distributed in the half chain of
the lattice for the many-body eigenstate jψEi with energy E
[14]. The large fluctuation of OðEÞ among nearby eigen-
states signifies the violation of the ETH. In the ergodic
phase, the fluctuations ofO are small and theETH is satisfied
[Fig. 5(a)], while in the MBL phase, the fluctuations are
obviously larger and the ETH is violated [Fig. 5(b)]. For
parameters in the critical regime, as shown in Fig. 5(c), the
fluctuations ofO are also large,which implies that the ETH is
violated and the eigenstates are nonthermal. This feature can
be even clearer by examining the qualitative behaviors of T
defined for the mid-one-third of states with D1 ¼ D=3 and
D2 ¼ 2D=3. As the system size L increases, the valueOðEÞ
tends to N=2 in the ergodic phase but keeps fluctuating and
results in finite values of T at large L for the nonthermal
phase. The numerical results of the sample averaged hTi are
presented in Figs. 5(d) and 5(e), as a function of V and μ.
With the increasing of system size L, we see that hTi
decreases if the phase is ergodic but enlarges in the MBL
andMBCphases. Therefore, the critical phase is nonthermal,
similar to the MBL phase. Together with the preceding
discussion on the EE, we conclude that the MBC phase is an
extended nonthermal phase.
Conclusions.—We have predicted that a MBC phase

exists in the thermodynamic limit in the 1D extended
Aubry-André-Harper-Hubbard model. Being a third type of
fundamental phase, distinct from ergodic and MBL phases,
the MBC phase shows novel basic features. First, by
analyzing number variance, we found that the level
statistics in the critical phase are neither GOE for ergodic
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regime nor Poisson for MBL, but are well described by
critical statistics. Further, from a multifractal analysis, we
showed that the many-body states in the MBC phase
exhibit the deep multifractal behavior. Finally, we unveiled
that the predicted critical phase violates the ETH, but the
EE exhibits a volume law, implying that this exotic critical
phase is delocalized but nonergodic and not thermal. Our
conclusive results are confirmed with system size
up to L ¼ 22 by the state-of-the-art numerical method.
As a new interacting phase beyond the ergodic and MBL
phases, many interesting issues, including the dynamical
properties, deserve further efforts of study. Our work opens
a door to explore quantum thermalization physics in the
MBC phases.
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