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We characterize metrologically useful multipartite entanglement by representing partitions with Young
diagrams. We derive entanglement witnesses that are sensitive to the shape of Young diagrams and show
that Dyson’s rank acts as a resource for quantum metrology. Common quantifiers, such as the entanglement
depth and k-separability are contained in this approach as the diagram’s width and height. Our methods are
experimentally accessible in a wide range of atomic systems, as we illustrate by analyzing published data
on the quantum Fisher information and spin-squeezing coefficients.
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An efficient classification of entanglement in multipartite
systems is crucial for our understanding of quantum many-
body systems and the development of quantum information
science [1–4]. A particular challenge is the development of
experimentally implementable criteria for the detection of
multipartite entanglement [5,6]. The development of quan-
tum technologies further demands a precise understanding
of the set of multipartite entangled states that enable a
quantum advantage in specific applications of quantum
information [7,8]. In this context, metrological entangle-
ment criteria are powerful tools that establish a quantitative
link between the number of detected entangled parties and
the quantum gain in interferometric measurements [8–12].
As a consequence of the exponentially increasing num-

ber of partitions in multipartite systems, there is no unique
way to quantify multipartite entanglement. Common
approaches to capture the extent of multipartite correlations
focus on simple integer indicators [5]: An entanglement
depth of w describes that at least w parties must be
entangled, while h-inseparability expresses that the system
cannot be split into h separable subsystems. Larger values
of w and smaller values of h generally indicate more
multipartite entanglement, and experimentally observable
bounds on both can be obtained with different methods
[5,6], including from the metrological sensitivity in terms
of the quantum Fisher information [11].
A systematic approach based on the partitions of a

multipartite system reveals a duality between w and h [13].
Let us illustrate this with the example of a 7-partite system that
allows for a separable description in the partition
Λ ¼ 1j2345j67, see Fig. 1. The system is separable into h ¼
3 subsets and it contains entanglement among up to w ¼ 4
parties, i.e., it has an entanglement depth of w ¼ 4. By using
the correspondence between partitions of a system (up to

permutations of the particle labels) and Young diagrams, we

can represent this partition as Λ∼ , where each box

represents one party and each row represents an entangled
subset of decreasing size from top to bottom. We can easily
convince ourselves that w and h correspond to the width and
height of the Young diagram, respectively.
Focusing exclusively on one of these two quantities

provides only limited information about the allowed
structure of separable partitions. The entanglement depth
w refers to the size of the largest subset but ignores the size
and number of the remaining subsets. For instance, w ¼ 4
does not distinguish between the partition Λ and, e.g.,
Λ0∼ , even though the latter clearly contains more
entanglement. Separability, in contrast, is insensitive to the
size of the entangled subsets and h ¼ 3 is also compatible

with, e.g., Λ00∼ . As an alternative integer quantifier, the

rank of a partition, defined by Dyson [14] as r ¼ w − h,
combines the information about w and h, and was recently
suggested to express the “strechability” of correlations
[13]. In our example, it successfully distinguishes these

FIG. 1. Representation of multipartite entanglement using
Young diagrams. In this example, a system of N ¼ 7 particles
is separable in a partition into h ¼ 3 subsets and contains an
entanglement depth of w ¼ 4 particles. These quantities corre-
spond to height h and width w of the associated Young diagram.
Dyson’s rank r ¼ w − h combines both pieces of information.
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partitions and yields the intuitive order rðΛ00Þ ¼ 0,
rðΛÞ ¼ 1, and rðΛ0Þ ¼ 2. With 2N − 3 steps between fully
separable and genuine N-partite entangled states, r pro-
vides a scale almost twice as fine as those provided by the
N possible values of w and h, respectively.
In this Letter, we derive metrological entanglement

criteria that provide combined information about w and
h, or about Dyson’s rank r. We base our criteria on
quantifiers of metrological sensitivity that are widely used
both in theory and experiments. Our results reveal hidden
details about the structure of multipartite entanglement
from the quantum Fisher information or spin-squeezing
parameters, while relying only on established measurement
techniques. This leads to a better understanding of metro-
logically useful multipartite entanglement, and uncovers in
particular the role of r as a resource for quantum-enhanced
metrology. As a single integer quantifier, r is found to
provide most information about multipartite entanglement
in the experimentally relevant regime of limited multi-
partite entanglement. The entanglement depth w, instead, is
shown to be most effective close to genuine N-partite
entanglement.
Metrological witness for (w,h)-entanglement.—We char-

acterize the degree of multipartite entanglement in terms of
the partitions that are compatible with a separable descrip-
tion of the correlations. A partition Λ ¼ fA1; A2;…; AjΛjg
separates the total N-partite system into jΛj nonempty,

disjoint subsets Al of size Nl such that
PjΛj

l¼1Nl ¼ N. A
state ρ̂Λ is Λ-separable if there exist local quantum states

ρ̂ðγÞAl
for each subsystem and a probability distribution pγ

such that ρ̂Λ ¼ P
γ pγρ̂

ðγÞ
A1

⊗ � � � ⊗ ρ̂ðγÞAjΛj . The partitions can

be classified according to the number jΛj of subsets and the
size maxΛ ¼ maxl jAlj of the largest subset, i.e., the
respective height h and width w of the associated Young
diagram. The entanglement depth is defined with respect to
the set Lw−prod ¼ fΛjmaxΛ ≤ wg of partitions with maxi-
mal width w. Any state that cannot be written as a
w-producible state ρ̂w−prod ¼

P
Λ∈Lw−prod

PΛρ̂Λ, where PΛ

is a probability distribution, has an entanglement depth of at
least wþ 1. Analogously, inseparability is related to the set
Lh−sep ¼ fΛjjΛj ≥ hg of partitions with minimal height h
and h-inseparable states cannot be represented in the form
ρ̂h−sep ¼

P
Λ∈Lh−sep

PΛρ̂Λ. By combining both pieces of
information, we obtain a finer description of multipartite
quantum correlations by the set of ðw; hÞ-entangled states,
i.e., those that cannot be modeled as ðw; hÞ-separable states

ρ̂ðw;hÞ−sep ¼
X

Λ∈Lw−prod∩Lh−sep

PΛρ̂Λ: ð1Þ

To derive criteria that allow us to distinguish between
different ðw; hÞ classes, we derive the metrological sensi-
tivity limits for states with restricted values of w and h.
Measuring or calculating the sensitivity of a state then

allows us to put bounds on w and h by comparison with
these limits. In the following we focus on N-qubit systems,
described by collective angular momentum operators Ĵn ¼
P

N
i¼1 n · σ̂ðiÞ=2 with unit vector n ∈ R3 and σ̂ðiÞ ¼

ðσ̂ðiÞx ; σ̂ðiÞy ; σ̂ðiÞz Þ a vector of Pauli matrices for the ith qubit.
The central theorem of quantum metrology, the quantum
Cramér-Rao bound ðΔθestÞ2 ≥ 1=FQ½ρ̂; Ĵn�, defines the
achievable precision limit for the estimation of a phase
shift θ generated by Ĵn, using the state ρ̂ [7,8,10,15,16]. The
phase θ is estimated from measurements of the quantum
state ρ̂ðθÞ ¼ ÛðθÞρ̂ ÛðθÞ† with ÛðθÞ ¼ e−iĴnθ and the
quantum Fisher information FQ½ρ̂; Ĵn� describes the sensi-
tivity of ρ̂ðθÞ to small variations of θ [15]. As an experi-
mentally accessible quantity, FQ has been employed in the
past as a versatile entanglement witness [2,4,8,9,11,17–19].
We are now in a position to present the main results

of this work. The quantum Fisher information of any
ðw; hÞ-separable state is limited to

FQ½ρ̂ðw;hÞ−sep; Ĵn� ≤ wðN − hÞ þ N; ð2Þ
where N=h ≤ w ≤ N − hþ 1 and N=w ≤ h ≤ N − wþ 1.
The bound (2) can be slightly tightened by explicitly
considering the division of N into integer subsets, and in
this case it is saturated by an optimal quantum state. A
detailed proof of Eq. (2) in its most general form, as well as
the optimal states are provided in the Supplemental
Material [20]. The monotonic growth of Eq. (2) in w
and its monotonic decrease in h demonstrate that higher
quantum advantages in metrology measurements require
entanglement among larger sets of particles.
In the extreme cases where all or none of the parties are

entangled, we recover the well-known limits of classical
and quantum parameter estimation strategies, respectively
[16]. Fully separable states, defined by ðw; hÞ ¼ ð1; NÞ, are
limited to FQ½ρ̂ð1;NÞ−sep; Ĵn� ≤ FSN½Ĵn� ¼ N, which leads
to shot-noise sensitivity ðΔθestÞ2 ≥ 1=N, while genuine
N-partite entanglement, ðw; hÞ ¼ ðN; 1Þ, enables sensitiv-
ities up to the Heisenberg limit FQ½ρ̂ðN;1Þ−sep; Ĵn� ≤ N2 with
ðΔθestÞ2 ≥ 1=N2 [8–10]. In between these extreme cases,
the metrological potential of finitely entangled states is
captured by the combined information provided by the
tuple ðw; hÞ. The metrological entanglement witness (2) has
a particularly simple interpretation: It identifies the
quantum advantage offered by ðw; hÞ-entanglement in
terms of the sensitivity difference to the shot-noise limit,
Q½ρ̂; Ĵn� ≔ FQ½ρ̂; Ĵn� − FSN½Ĵn�. The advantage is indeed
bounded for ðw; hÞ-separable states by

Q½ρ̂ðw;hÞ−sep; Ĵn� ≤ wðN − hÞ: ð3Þ
A sensitivity that exceeds the shot-noise limit beyond
this bound consequently implies metrologically useful
ðw; hÞ-entanglement.
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We recover known bounds that only provide information
on either w or h by ignoring part of the information
contained in (2). For instance, by replacing h with the
trivial lower bound N=w, we obtain the well-known
sensitivity limit of w-producible states [11]

FQ½ρ̂w−prod; Ĵn� ≤ wN; ð4Þ

where 1 ≤ w ≤ N. The result (2) thus generalizes (4) which
has enabled the widespread study of multiparticle entan-
glement in quantum metrology [8], but also provides a
valuable tool to understand entanglement in quantum-many
body systems [2,4] and topological quantum phase tran-
sitions [23]. Similarly, we can ignore the information about
w by using the trivial upper bound N − hþ 1, yielding the
sensitivity limit of h-separable states [24]

FQ½ρ̂h−sep; Ĵn� ≤ ðN − hþ 1Þ2 þ h − 1; ð5Þ

where 1 ≤ h ≤ N.
Rather than fully ignoring the information provided by

either w or h, we combine both into a more informative
integer quantifier of multipartite entanglement. Dyson’s
rank r ¼ w − h reflects the increase of correlations due to
both larger w and smaller h. The range of r are the integer
values from −ðN − 1Þ to N − 1 except �ðN − 2Þ [14].
The set of states with Dyson’s rank not larger than r is
defined as ρ̂r−rnk ¼

P
Λ∈Lr−rnk

PΛρ̂Λ via the set Lr−rnk ¼
fΛjmaxΛ − jΛj ≤ rg [13]. We obtain the bound [20]

FQ½ρ̂r−rnk; Ĵn� ≤
ðN þ rÞ2

4
−
1

4
þ N; ð6Þ

for all values of r, except for r ¼ 4 − N, where we have
FQ½ρ̂ð4−NÞ−rnk; Ĵn� ≤ N þ 4. The first term in (6) clearly
identifies the quadratic quantum advantage over the shot-
noise limit offered by states with larger Dyson’s rank r in
terms of Q½ρ̂; Ĵn�.
The upper bounds for ðw; hÞ-separable states given in

Eq. (2) are represented as a function of w and h in Fig. 2(a)
[25]. The bounds on producibility (4) and separability (5)
are recovered as the projections onto the axes describing w
or h (red and green plots, respectively). Since these
correspond to the short arms of the right triangle (blue
columns) that is occupied by tuples ðw; hÞ, these projec-
tions ignore large amounts of information on the respective
other coordinate. A finer resolution can be obtained by the
projection along the hypothenuse that is described by
r ¼ w − h. The most detailed information about multipar-
tite entanglement is provided by the tuples ðw; hÞ.
Analysis of experimental data.—Our results allow us to

extract information about these quantities directly from FQ
without the need for additional measurements. To illustrate
the power of this technique, we study the separability
structure of experimentally generated quantum states based

on published lower bounds for FQ. We first focus on an
example with moderate particle number N ¼ 14, reported
in Ref. [26]. In this trapped-ion experiment a quantum
Fisher information of at least FQ½ρ̂; Ĵz� ≥ 40.4 has been
observed [27]. The performance of the different bounds can
be gauged by the number of separable ðw; hÞ classes, i.e.,
tuples ðw; hÞ that are excluded. Note that more than
one partition may be compatible with a tuple ðw; hÞ.
From Eq. (4) and its sharper version [20], we find that
the measured data is incompatible with partitions of width
w ≤ 3, implying an entanglement depth of w ¼ 4, which
excludes 16 tuples [Fig. 3(a)]. Similarly, from Eq. (5) we
find h ¼ 9, excluding the 11 tuples of the system into more
than 10 parts [Fig. 3(b)]. Much more information is
obtained by using the bound (2), which excludes a total
of 24 separable tuples [Fig. 3(d)] [25]. Among all single
integer quantifiers, Dyson’s rank, obtained from (6)
to be r ¼ −3, detects the largest amount of 20 separable
tuples [Fig. 3(c)] [25]. The excluded tuples for each
criterion are summarized in Fig. 3(e), where we also
highlight specific inseparable partitions that remain
undetected by the individual information on w or h.
This technique may also be applied to systems with

larger particle numbers, as we illustrate through the
analysis of additional data on measurements of lower
bounds on the quantum Fisher information in systems of
cold atoms and ions published in Refs. [26,28,29]. While
for a full account, we refer to the Supplemental Material
[20]; in Fig. 4(a) we show results obtained from the

FIG. 2. Maximal metrological sensitivity for ðw; hÞ-separable
states as a function of w and h. The sensitivity limits are given for
(a) the quantum Fisher information FQ½ρ̂; Ĵn� and (b) the spin-
squeezing parameter ξ2. By ignoring either w or h, we obtain
bounds for w-producible (red projection) and h-separable states
(green projection), respectively. A finer projection is given by
Dyson’s rank r ¼ w − h [25].

PHYSICAL REVIEW LETTERS 126, 080502 (2021)

080502-3



measurement of FQ½ρ̂; Ĵz� ≥ 266.7 with N ¼ 127 trapped
ions, as announced in Ref. [29]. Generally, we find that r is
the most sensitive single integer quantifier of multipartite
entanglement in the experimentally most relevant regime of
finite entanglement. Only close to the limit of genuine
multipartite entanglement, the entanglement depth w
becomes slightly more sensitive than r, while at no point
do we gain more information from h [20].
Bounds for the spin-squeezing coefficient.—We have so

far focused on metrological entanglement witnesses that
make use of the quantum Fisher information, the ultimate
sensitivity limit achievable by an optimal measurement. In
many experimental situations, it is more convenient to
study the precision with respect to the specific measure-
ment of a collective spin observable. This is achieved by
spin-squeezing coefficients [8,30,31], first introduced by
Wineland et al. as ξ2 ¼ NðΔĴnÞ2=hĴmi2, with suitably
chosen, orthogonal directions n and m [30]. The spin-
squeezing coefficient expresses the quantum gain in sensi-
tivity over the shot-noise limit due to squeezing of a spin
observable Ĵn and has found widespread application in
experiments with atomic systems [8]. Spin squeezing
further gives rise to lower bounds on the quantum Fisher
information [9,32] and provides an experimentally con-
venient witness for the entanglement depth w [7,22,33,34].
We derive state-independent bounds on ξ2 that are sensitive
to both w and h, by relating the spin-squeezing coefficient
to the bounds that we found for the quantum Fisher
information. Specifically, we show that [20]

Nmax
ρ̂Λ−sep

ξ−2ρ̂Λ−sep ≤
1

2
max
ρ̂Λ−sep

FQ½ρ̂Λ−sep; Ĵn� þ N; ð7Þ

which allows us to use our results (2), (4), (5), and (6) on
FQ to identify limits on ξ2 as a function of w, h, or r [20].
These bounds are shown in Fig. 2(b). For instance, from
Eq. (6) we obtain the limit

ξ2ρr−rnk ≥
8N

ðN þ rÞ2 þ 12N − 1
ð8Þ

for states with Dyson’s rank no larger than r. In Fig. 4(b)
we summarize the entanglement analysis based on the
experimentally measured value of ξ2 ≤ −4.5 dB of spin
squeezing for N ¼ 470 particles, reported in Ref. [17].
From the widely available experimental data on ξ2

and FQ, we can immediately extract measured values of
Dyson’s rank r using the bounds (6) and (8) [25]. In Fig. 5
we analyze experimental data of Refs. [8,17,26–29,35–46],
describing experiments with trapped ions, Bose-Einstein
condensates and cold thermal atoms. In order to be able
to compare the measurements with different numbers
of particles N, we plot rþ N with values in the
range ½1; 2N − 1�.

FIG. 3. Tuples ðw; hÞ whose separability can be excluded from
the experimentally extracted value of FQ ≥ 40.4 for N ¼ 14
parties in Ref. [26] are highlighted. The red tuples (a) are
excluded from the entanglement depth (4), the green tuples
(b) from h-separability (5) and the yellow tuples (c) from Dyson’s
rank (6). The gray tuples (d) are found inseparable by Eq. (2), that
uses the full information on ðw; hÞ [25]. The results are
summarized in the top-view plot (e), where each square repre-
sents one tuple ðw; hÞ and example partitions with given width w
and height h are illustrated.

(a)

(b)

FIG. 4. (a) Analysis of the multipartite entanglement structure
[same as in Fig. 3(e)] for N ¼ 127 parties based on the
measurement of FQ½ρ̂; Ĵz� ≥ 266.7 reported in Ref. [29]. (b) Same
analysis based on the spin-squeezing coefficient (7) for a
measurement of ξ2 ≤ −4.5 dB with N ¼ 470 particles [17].
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Conclusions.—Based on widely used quantifiers for met-
rological sensitivity, we have derived entanglement witnesses
that are sensitive to combined constraints on the size w of the
largest entangled group (w-producibility or entanglement
depth) and the number h of separable groups (h-separability).
The description of inseparable partitions in terms of Young
diagrams has allowed us to gain a precise understanding of
metrologically useful multipartite entanglement beyond the
information that can be provided by either w or h individually.
Our techniques can be readily implemented for the theoretical
and experimental study of multipartite entanglement in
quantum information and many-body physics.
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[18] M. Gessner, L. Pezzè, and A. Smerzi, Efficient entangle-
ment criteria for discrete, continuous, and hybrid variables,
Phys. Rev. A 94, 020101(R) (2016).

[19] Z. Qin, M. Gessner, Z. Ren, X. Deng, D. Han, W. Li, X. Su,
A. Smerzi, and K. Peng, Characterizing the multipartite
continuous-variable entanglement structure from squeezing
coefficients and the Fisher information, npj Quantum
Inf. 5, 3 (2019); M. Gessner, L. Pezzè, and A. Smerzi,
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