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We study an active matter system comprised of magnetic microswimmers confined in a microfluidic
channel and show that it exhibits a new type of self-organized behavior. Combining analytical techniques
and Brownian dynamics simulations, we demonstrate how the interplay of nonequilibrium activity, external
driving, and magnetic interactions leads to the condensation of swimmers at the center of the channel via a
nonequilibrium phase transition that is formally akin to Bose-Einstein condensation. We find that the
effective dynamics of the microswimmers can be mapped onto a diffusivity-edge problem, and use the
mapping to build a generalized thermodynamic framework, which is verified by a parameter-free
comparison with our simulations. Our work reveals how driven active matter has the potential to generate
exotic classical nonequilibrium phases of matter with traits that are analogous to those observed in quantum
systems.
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The interplay between nonequilibrium collective dynam-
ics of active matter systems [1,2] and external control
provides a wide range of possibilities for new classes of
self-organization [3–14]. Because of the versatility they
offer [15], magnetic actuation [16–18] and magnetic steer-
ing [19,20] have received increasing attention in the recent
years, with experimental realizations consisting of both
biological [21,22] and synthetic [23–27] microswimmers.
The coupling between nonequilibrium activity and

long-range magnetic dipole-dipole interaction can lead to
new emergent properties for magnetic microswimmers
[8,10,28–32]. Similarly rich phenomenology is known to
emerge from long-range interactions in phoretic active
matter [33], and in particular, due to the interplay between
translational and orientational degrees of freedom [34–37].
In determining the potential for such emergent effects,
a key difference between biological and artificial magnetic
swimmers is in the strength of their respective interactions.
While magnetotactic bacteria carry a typical magnetization
of the order of ∼10 A=m [21,22], the magnetization can
reach values of up to ∼103 A=m for swimmers with
magnetite [38]. The effect of such strong magnetic dipole-
dipole interaction on the collective response of magnetic
swimmers is still largely unexplored, despite the growing

interest in their potential applications for cargo and drug
delivery in microscopic environments [39]. Here, we
illustrate how strong dipole-dipole interactions affect the
collective behavior of magnetic microswimmers confined
in a microfluidic channel.
Using Brownian dynamics simulations and a coarse-

grained analytical framework, we show that the radial
dynamics of microswimmers across the channel is equiv-
alent to that of particles diffusing in an effective potential
and presenting a diffusivity edge [14]. Consequently, the
system is found to exhibit a transition leading to the
formation of a condensate at the channel center, which
coexists with a surrounding gas. By means of a generalized
thermodynamic framework, we characterize the singular
behavior of the system and find it to be analogous to the
characteristics of Bose-Einstein condensation (BEC)
transition. These concrete predictions are moreover quan-
titatively verified by simulations, without the need of
tuning parameters. Finally, our extensive simulations across
the entire parameter space allow us to construct a phase
diagram, with phase boundaries that show agreement with
the simple criteria obtained from our analytical framework.
We note that BEC-like behavior has been reported in lattice
models of mass aggregation [40].
We start by introducing the microscopic model of

magnetic microswimmers which we simulated and used as
a starting point for the derivation of a field theory. We
consider swimmers that carry a magnetic dipole moment
m0n, along which they self-propel with a constant speed v0,
under the influence of a uniform magnetic field Bext ¼
−Bextez; see Fig. 1(a). They swim in a three–dimensional
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cylindrical channel oriented along ez, and experience a
Poiseuille flow described as Vf ¼ vfð1 − r2=R2

0Þez, with
r denoting the radial distance from the center and R0 being
the channel radius. The Langevin equations governing
the dynamics of their position r and orientation n thus
read _r ¼ v0n þ Vf þ ðm0=ζÞ∇ðn · BintÞ þ ξ and _n¼
½ðm0=ζrÞn×ðBextþBintÞþ 1

2
∇×Vfþξr�×n, where ζ and

ζr denote the translational and rotational friction coeffi-
cients that are taken to be scalar for simplicity, ξ and ξr are
thermal noises of respective variances 2D and 2Dr, with
D ¼ kBT=ζ and Dr ¼ kBT=ζr, and T being the medium
temperature. Bint is the effective magnetic field induced
by other swimmers, and is obtained from Ampère’s law. In
what follows, N denotes the number of swimmers in the
channel, which is set to 1000 (simulation details can be
found in Ref. [41]). Their mean density ρ0 ¼ N=ðπR2

0LÞ is

adjusted by varying the channel length L. Moreover, we fix
v0, R0,m0, ζ, ζr, and T to realistic values [8,10] (see Table I
in Ref. [41]), such that only Bext, vf, and ρ0 are varied. As
we shall see later, the dimensionless number

J ≡m0Bext

kBT
DDr

v0vf
; ð1Þ

which combines the relative strength of the magnetic
energy versus thermal energy and the strength of propul-
sion and shear velocities versus diffusion, plays a key role
in determining the behavior of the system.
When magnetic interactions are negligible compared

to the effect of external driving, the radial dynamics
of particles relaxes over a finite timescale τ≡
DrR2

0m0Bext=ðv0vfkBTÞ ¼ JR2
0=D [30]. The dynamics

along the channel direction ez is then determined by the
value of the dimensionless parameter

B≡ μ0ρ0m2
0

4kBT
m0Bext

kBT

vf
v0

: ð2Þ

When B < 1, the distribution of swimmers along ez is
uniform on average, whereas for B ≥ 1 the system under-
goes an instability leading to a dynamical steady state made
of a periodic arrangement of traveling clusters, character-
ized by strong inhomogeneities in the particle distribution
along the channel axis [see Fig. 1(d)].
In this study, we focus on the stationary radial distribu-

tion of swimmers, ϕrðrÞ≡ hρðr; tÞ=ρ0iz;t, where ρðr; tÞ
denotes particle density. The Poiseuille flow Vf generates
a vorticity that orients the swimmers—that are already
aligned by the external magnetic field—towards the center
of the channel, essentially acting as a confining potential in
the radial direction [8,30]. Figure 1(b) shows how for
B ≪ 1 ϕrðrÞ is well approximated by a Gaussian, which
corresponds to the case where the effective potential is
quadratic. Deep in the clustering phase, ϕrðrÞ is not
Gaussian and dramatically shoots up in the vicinity of
r ¼ 0 [see Fig. 1(c)]. The scaling of the maximum of ϕr at
r ¼ 0, denoted ϕ0, with the mean particle density ρ0 is
shown in Fig. 1(e). When B is sufficiently small, ϕ0 barely
varies with ρ0 as expected from a radial focusing by an
effective potential. On the contrary, for large values of B the
system exhibits anomalous accumulation of particles at
r ¼ 0, as indicated by the abrupt increase of ϕ0 with ρ0.
The parameter B essentially measures how dipole-dipole

interactions and alignment with the external magnetic field
dominate over thermal fluctuations, as well as how self-
propulsion competes with the external flow. The conden-
sation phenomenon described above occurs when B ≫ 1,
and thus relies on the key role of magnetic dipolar inter-
actions between swimmers. As a first simplification, we
consider the case where the alignment with Bext dominates
over thermal fluctuations: m0Bext ≫ kBT. We also assume

(b) (c)

(e)

(a)

(d)

FIG. 1. Distribution of the magnetic swimmers in the channel.
(a) Schematics of the system in the presence of a Poiseuille flow
Vf and magnetic field Bext. Average radial distribution of
swimmers ϕr in the Gaussian (b) and condensed (c) phases at,
respectively, ρ0 ¼ 2 × 1015 m−3 and ρ0 ¼ 5 × 1015 m−3. Solid
lines are obtained from simulations, and dashed lines are obtained
from theoretical predictions given by Eq. (7). (d) Longitudinal
particle distribution of swimmers averaged over r showing self-
organization of swimmers into dense clusters for large densities.
(e) Maximum value ϕ0 of ϕr at the channel center as function of
the mean density ρ0. The vertical dashed line marks the transition
to the condensation regime obtained from the theory. In (b)–
(e) vf ¼ 80 μm=s and Bext ¼ 4.4 mT.
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that the induced magnetic field Bint is negligible compared
to Bext in the orientational dynamics.
Within the above two assumptions, which are met in

most experimentally relevant cases [8,10], the rotational
dynamics becomes a fast process and can be decoupled
from the translational dynamics. The resulting orientational
equilibrium is essentially determined by the balance
between magnetic torque (m0n × Bext) and the vorticity
(1
2
∇ × Vf). Denoting θ the angle between n and −ez

[see Fig. 1(a)], its stationary value averaged over thermal
fluctuations obeys hsin θi ≃ r=ðτv0Þ ≪ 1. The equation
governing the dynamics of r reads _r ¼ −ðr=τÞ þ ðm0=ζÞ∂rðez · BintÞ þ ϑr, where the effective Gaussian noise ϑr is
delta correlated with variance 2Deff , where Deff ≡Dþ
v20D

−1
r ½kBT=ðm0BextÞ�2. The dynamics of the system in the

radial direction is therefore equivalent to that of interacting
dipoles that experience an effective temperature

kBTeff ≡ ζDeff ¼ kBT

�
1þ v20

DDr

�
kBT

m0Bext

�
2
�
; ð3Þ

and a confining effective harmonic potential UðrÞ≡ 1
2
kr2

with stiffness k≡ ζ=τ ¼ kBTeff=ðDeffτÞ which focuses the
particles at the center of the channel. Interestingly, our
system constitutes a realization of nonequilibrium matter
with anisotropic temperature [42], as the interplay between
activity, thermal noise, and external actuation makes the

strength of fluctuations in the radial direction, set by kBTeff,
stronger than that along the channel, which is given by kBT
[30,41]. Numerical simulations of the Langevin equations
reveal that the clustering instability leads to a highly
dynamic regime where clusters assemble and disassemble
continuously due to thermal fluctuations (see Supplemental
Material movie [41], clustering panel). Therefore, longi-
tudinal density inhomogeneities are expected to have little
influence on Bint in the steady state, suggesting that the
dynamics will be dominated by the leading contribution of
BintðrÞ ≃ −μ0m0ρ0ϕrðrÞez in this limit [41].
With this input, the radial dynamics completely decou-

ples from the longitudinal one. Using the following ansatz
for the particle density inside the channel ρðr; tÞ ¼
ρ0ϕrðrÞϕzðz; tÞ, the radial equilibrium condition thus
follows

kBTeff

�
1 −

ϕrðrÞ
ϕc

�
∂rϕrðrÞ þ ϕrðrÞ∂rUðrÞ ¼ 0; ð4Þ

where

ϕc ≡ 1

4B

v2f
DDr

kBTeff

kR2
0

¼ kBTeff

μ0ρ0m2
0

: ð5Þ

While Teff plays the role of an effective temperature for ϕr
in the dilute limit (corresponding to ϕr → 0) as mentioned
above, the strength of the collective effects leading to
density-dependent effective diffusion in Eq. (4) is set
by ϕc. Importantly, we observe that the associated density-
dependent effective diffusion coefficient vanishes at
ϕr ¼ ϕc, which will place the system of magnetic
swimmers in a shear flow in the class of systems that
can exhibit a classical analogue of Bose-Einstein conden-
sation of particles in the ground state U ¼ 0 [14,45].
It follows from Eq. (4) that for ϕr < ϕc, ϕr is a

monotonously decreasing function of U [14]. We denote
ϕ0 as the maximum of ϕr that corresponds to U ¼ 0, and
define β≡ ðkBTeffÞ−1. Using these definitions, the solution
of Eq. (4) reads ϕrðUÞ ¼ −ϕcW0½−ðϕ0=ϕcÞe−βU−ðϕ0=ϕcÞ�
(valid for ϕ0 < ϕc), whereW0ðxÞ is the principal branch of
the Lambert W function that satisfies W0ðxexÞ ¼ x. When
ϕ0 < ϕc, ϕr is a smooth function of r and its normalization
ð2=R2

0Þ
R∞
0 rdrϕrðUðrÞÞ ¼ ð2=kR2

0Þ
R∞
0 dUϕrðUÞ ¼ 1

leads to [46]

ϕ0 ¼ ϕcð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Tc=Teff

p
Þ ðTeff > TcÞ; ð6Þ

where kBTc ≡ kR2
0=ϕc is defined as the value of kBTeff

for which ϕ0 ¼ ϕc. In particular, for Teff ≫ Tc
the effect of dipolar interactions is negligible, such that
ϕr is well approximated by a Boltzmann distribution:
ϕr ∼ ðβkR2

0=2Þ expð−βUÞ, in agreement with our numerical
simulations [see Fig. 1(b)]. As the systematic derivation of
Eq. (4) from the particle-level stochastic dynamics gives the

(a) (b)

(c) (d)

FIG. 2. Quantitative characterization of the condensate.
(a) Maximum of the radial distribution ϕ0, (b) the condensate
fraction Nc=N, and (c) the mean potential energy per particle Ū,
as functions of Teff=Tc and fixed mean density ρ0. For (b) and
(c) ρ0 ¼ 2 × 1016 m−3. (d) Pressure exerted on the condensate
Δp as a function of ρ−10 for vf ¼ 80 μm=s, Bext ¼ 4.4 mT (red)
and vf ¼ 60 μm=s, Bext ¼ 3.3 mT (blue). In all panels the
simulation data (points) are compared to the theoretical predic-
tions (dashed lines) with no free parameters.
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expressions of Teff , ϕc, and U as functions of the micro-
scopic parameters, a quantitative and parameter-free com-
parison between the theory and the simulations is possible.
This is shown in Fig. 2, whose panel (a) verifies that Eq. (6)
is in excellent agreement with the simulation results
for Teff > Tc.
As ϕ0 approaches ϕc (or equivalently as Teff → Tc), ϕr

becomes nonanalytical at U ¼ 0, which reflects the for-
mation of a condensate [see Fig. 1(c)]. Consequently, the
distribution cannot be normalized and an additional con-
tribution from the ground state needs to be added by hand.
Denoting the number of particles in the condensate as Nc
(and Nc=N as the corresponding ground state fraction), the
distribution reads

ϕrðUÞ¼
kR2

0

2

Nc

N
δðUÞ−ϕcW0½−e−βU−1� ðTeff ≤TcÞ: ð7Þ

This is the only stable solution of Eq. (4) which admits values
of ϕr larger than ϕc [45]. It thus emerges that the system
belongs to the class of diffusivity-edge problems treated in
Ref. [14], for which the nonlinear diffusion vanishes for all
ϕr ≥ ϕc, because the solution given in Eq. (7) admits values
of ϕ larger than ϕc at a single point only.
From the normalization of ϕr, we find that the fraction of

particles in the condensate satisfies the following relation:

Nc

N
¼ 1 −

Teff

Tc
ðTeff ≤ TcÞ; ð8Þ

which is consistent with the BEC law in two-dimensional
free space [46,47]. Equation (7) predicts the formation of a
pointwise condensate at U ¼ 0. We have measured Nc=N
in our Brownian dynamics simulations by defining it as
ð2=kR2

0Þ
R
ϕrðUÞ≥ϕc

dUϕrðUÞ, and found a good agreement
with the theoretical prediction of Eq. (8) as shown (by the
red dots) in Fig. 2(b). We have found that measuring the
average number of particles N0 in a cylinder of radius
0.005R0 around the channel center leads to an under-
estimation of the number of condensed particles [see the
hollow squares in Fig. 2(b)]. We thus conclude from these
observations that the condensate emerging in our simu-
lations occupies a finite volume. This feature can moreover
be read directly from the distribution ϕr and is linked to the
regularization of the near-field magnetic interactions,
whose details are discussed in Ref. [41]. The addition of
short-range repulsion between the swimmers is expected to
have similar consequences.
Following previous works [14,45], the analogy with

BEC can be further extended by defining and calculating
thermodynamic quantities for the system. The mean
potential energy per particle defined as Ū ≡ ð2=kR2

0ÞR∞
0 dUUϕrðUÞ, can be explicitly calculated to give

Ū
kBTeff

¼

8><
>:

5
6
þ 1

3
ϕ0

ϕc

�
Teff
Tc

− 1
�

ðTeff > TcÞ
5
6
Teff
Tc

ðTeff ≤ TcÞ
: ð9Þ

As in the case of BEC [48], Eq. (9) predicts a change of slope
of Ū at Teff ¼ Tc [47]. In particular, for Teff ≫ Tc it gives
Ū ∼ kBTeff , which corresponds to a two-dimensional ideal
gas law. Figure 2(c) shows that the theoretical prediction
[Eq. (9)] is well reproduced by the simulations. We note that
Ū is generally overestimated in the condensed phase as a
consequence of the finite radial extension of the condensate.
With the parameters used in the simulations, the radial

focusing of particles occurs on scales much smaller than
the channel radius [see Figs. 1(b) and 1(c)]. Therefore, the
radial confinement of particles is essentially due to
the effective potential UðrÞ and the effect of the channel
boundary is negligible. Within the generalized thermo-
dynamics of the BEC in the steady state, a pressure p
can be defined for the active fluid via [14,45] dp ¼
−ρ0ϕrðUÞdU. The difference of pressure between the edge
and center of the channel is thus given by

Δp ¼ 1

2
ρ0kR2

0 ×

	
1 ðTeff > TcÞ
Teff=Tc ðTeff ≤ TcÞ

; ð10Þ

which corresponds to the behavior expected for BEC
[46,47,49]. In particular, as Tc ∝ ϕ−1

c ∝ ρ0, Δp is inde-
pendent of ρ0 in the condensed phase (Teff ≤ Tc).
Isotherms of Δp versus ρ−10 as represented in Fig. 2(d)
therefore exhibit characteristic plateaus for ρ−10 ≤ ρ−10;c,
where ρ0;c is the value of ρ0 at which Tc ¼ Teff . To
compare Eq. (10) with the simulation, we have calculated
the total pressure exerted on the condensate, defined via
ρ0

R
ϕrðUÞ<ϕc

dUϕrðUÞ, by using the measured average
distribution ϕr. Δp exhibits good agreement with the
theory as seen in Fig. 2(d). As in the case of mean energy
Ū, Δp appears to be larger than the predicted values in the
condensed phase, which is also due to the finite volume
occupied by the condensate.
The longitudinal clustering of swimmers was charac-

terized in a previous study [30] neglecting the dipole-dipole
interaction term in radial dynamics, thus effectively
describing the limit ϕ0=ϕc ≪ 1. As larger values of ϕ0=ϕc
qualitatively change the shape of the radial distribution, a
natural question is how these modifications affect the
behavior of swimmers in the longitudinal direction. We
find that the longitudinal clustering instability occurs for
Teff > Tc when the following condition is satisfied [41]:

1

Jϕc

�
Teff

Tc

�
2
�
ϕ0

ϕc

�
2
�
1 −

2ϕ0

3ϕc

�
≥ 1: ð11Þ

In the limit of small ϕ0=ϕc and with parameter values
considered in Ref. [30], Eq. (11) reduces to B ≥ 1, as
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expected. Below the condensation threshold where
Teff < Tc, the lhs of Eq. (11) diverges due to the singularity
of ϕr at U ¼ 0, and the inequality is always satisfied.
Our theoretical investigations thus predict that magnetic

microswimmers in a quasi-one-dimensional channel
exhibit three types of dynamical behavior. When collective
effects are negligible, the swimmers are radially focused
due to an effective quadratic potential created by the
interplay between the external flow and the magnetic field,
while being uniformly distributed along the channel axis.
When Teff > Tc and the inequality Eq. (11) is satisfied, the
system undergoes an instability that gives rise to the
formation of clusters that travel along the channel. This
longitudinal structure formation persists when Teff ≤ Tc,
while in that case a macroscopic number of swimmers form
a condensate at the center of the channel in a BEC-like
fashion. A phase diagram in the (Teff=Tc, J , ϕc) parameter
space summarizing this phase behavior is provided in Fig. 3
(a). Our Brownian dynamics simulations at fixed values of
J ¼ 2 × 10−4 and 5 × 10−4 verify our theoretically pre-
dicted phase behavior of the system, as shown in Figs. 3(b)
and 3(c) (see Ref. [41] for simulations details). We expect
the above results to be accessible to experiments, as a large
part of the full phase diagram shown can be explored by
varying the parameters of our microscopic model in
realistic ranges [41]. Moreover, since the strength of
magnetic interactions increases with both ρ0 and m0, we
expect artificial swimmers that generally carry a larger
magnetic moment than biological ones to undergo cluster-
ing and condensation at lower mean densities, and be less
affected by steric effects.
To conclude, we have fully characterized the collective

behavior of magnetic microswimmers suspended in a
microfluidic channel. We have found the system to exhibit
a novel type of nonequilibrium condensation transition,
which shows striking similarities with Bose-Einstein

condensation. While such a transition was predicted at
the mean field level in Ref. [14], the quantitative agreement
with our Brownian dynamics simulations shows that the
description goes beyond what was originally anticipated
and persists even after the introduction of fluctuations.
These findings not only enrich the broad set of many-body
dynamics exhibited by active matter systems, but also
provide guidelines for future designs of controllable func-
tional microrobotic active matter systems with desired
emergent properties.
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