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In solid state physics, giant magnetoresistance is the large change in electrical resistance due to an
external magnetic field. Here we show that giant magnetoresistance is possible in a spin chain composed of
weakly interacting layers of strongly coupled spins. This is found for all system sizes even down to a
minimal system of four spins. The mechanism driving the effect is a mismatch in the energy spectrum
resulting in spin excitations being reflected at the boundaries between layers. This mismatch, and thus the
current, can be controlled by external magnetic fields resulting in giant magnetoresistance. A simple rule
for determining the behavior of the spin transport under the influence of a magnetic field is presented based
on the energy levels of the strongly coupled spins.
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When giant magnetoresistance was first discovered in
1988 [1,2], it was observed in alternating layers of ferro-
magnetic and antiferromagnetic materials where an external
magnetic field drastically changed the conductive properties
of the material. Later, it has also been observed in ferro-
magnetic layers separated by isolating nonmagnetic layers
[3–5]. This discovery led to significant improvements in
computer engineering, helping to advance, among others,
memory (RAM) [6], transistors [7], and sensors [8]. The
effect of giant magnetoresistance is largely attributed to
electron scattering depending on spin orientation in the
aforementioned materials [9,10], although recent work found
the effect also in one-dimensional Hubbard chains [11].
In the effort of increased miniaturization, traditional

electronics has encountered problems due to quantum
mechanical effects like tunneling. Therefore, many alterna-
tive information carriers such as thermal [12,13] and mag-
netic [14,15] currents have been proposed. Among the most
prominent of these is spin transport in boundary-driven spin
chains [16–19]. Here a linear chain of nearest-neighbor
interacting spins are coupled to magnetic reservoirs at both
ends, thus inducing a net magnetic transport from one
reservoir to the other. The current properties are a conse-
quence of the induced steady state which can be engineered
into components like diodes [20–22].
Here we show that a class of simple quantum spin

systems allow controlled manipulation of the spin current
through application of external magnetic fields, i.e., giant
magnetoresistance. This is done by considering a generic
model composed of weakly interacting layers of strongly
coupled spins as an analog to the classical phenomenon.
The groups of strongly coupled spins mimic the action of

the ferromagnetic layers which are allowed to interact only
weakly with one another, mimicking the insulating layers.
This results in a mismatch of the energy levels of each
group, causing spin excitations to be reflected at the weakly
coupled boundary. A magnetic field can be applied to align
these energy levels, allowing spin excitations to be
exchanged, resulting in giant magnetoresistance. Our work
demonstrates that this coveted and technologically impor-
tant effect is present in a surprisingly simple quantum
system of interacting spins as compared to the condensed-
matter materials typically studied. Moreover, our work
extends the realm of study of giant magnetoresistance to
quantum spintronics [23] down to mesoscopic or even
few-atom system sizes [24]. As we demonstrate below, the
effect can be observed with just a few spins and
should be realizable using several of the current platforms
used to pursue quantum technology beyond classical
electronics.
Setup.—The general model studied here is a set of N

linear spin-1=2 chains where the ith chain is composed of
ni spins coupled strongly to each other through the
Hamiltonian

Ĥ0 ¼
XN
i¼1

�Xni−1
j¼1

Uiðσ̂xi;jσ̂xi;jþ1 þ σ̂yi;jσ̂
y
i;jþ1 þ ΔUi

σ̂zi;jσ̂
z
i;jþ1Þ

þh
Xni
j¼1

σ̂zi;j

�
:

The Pauli matrices for the jth spin within the ith chain is
σ̂αi;j for α ¼ x, y, z, and we are using units where ℏ ¼ 1.
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The exchange coupling between spins in the ith chain isUi,
the anisotropy is ΔUi

, and h sets the spin excitation energy
for the spins. We make these strongly coupled chain
segments a part of a larger chain by adding two extra
spins labeled L and R. The extra two spins are described by
the Pauli matrices σ̂αL;R for α ¼ x, y, z. Finally, we couple
these two spins and the strongly interacting chains weakly
to each other through the Hamiltonian

ĤLR ¼ Jðσ̂xLσ̂x1;1 þ σ̂yLσ̂
y
1;1 þ ΔJσ̂

z
Lσ̂

z
1;1Þ

þ Jðσ̂xN;nN
σ̂xR þ σ̂yN;nN

σ̂yR þ ΔJσ̂
z
N;nN

σ̂zRÞ;
Ĥ ¼ Ĥ0 þ ĤLR

þ J
XN−1

i¼1

ðσ̂xi;ni σ̂xiþ1;1 þ σ̂yi;ni σ̂
y
iþ1;1 þ ΔJσ̂

z
i;ni

σ̂ziþ1;1Þ;

where the exchange coupling between chains J must be
smaller than the interchain exchanges J ≪ Ui and
jΔJj; jΔUi

j < 1. An example of such a setup can be seen
in Fig. 1.
To study spin transport in the system, we couple it to spin

reservoirs through spin L on the left and spin R on the right;
see Fig. 1. The presence of the reservoirs means that we
have an open (nonunitary) quantum system that can be
described by a density matrix ρ̂ and the corresponding
Lindblad master equation [25,26]

∂ρ̂
∂t ¼ L½ρ̂� ¼ −i½Ĥ; ρ̂� þDL½ρ̂� þDR½ρ̂�: ð1Þ

Here ½•; •� is the commutator, L½ρ̂� is the Lindblad super-
operator, and DL;R½ρ̂� are dissipative terms describing the
action of the baths:

DL;R½ρ̂� ¼ γ

�
1þ fL;R

2

�
σ̂þL;Rρ̂σ̂

−
L;R −

1

2
fσ̂−L;Rσ̂þL;R; ρ̂g

�

þ 1 − fL;R
2

�
σ̂−L;Rρ̂σ̂

þ
L;R −

1

2
fσ̂þL;Rσ̂−L;R; ρ̂g

��
:

σ̂þL;R ¼ ðσ̂−L;RÞ† ¼ ðσ̂xL;R þ iσ̂yL;RÞ=2, γ is the strength of the
interaction with the baths, fL;R determines the nature of
the interaction, and f•; •g denotes the anticommutator.
The baths are coupled with strength γ ¼ J, although we
note that smaller values of γ induce similar effects. The
characteristics of these reservoirs are determined by the
parameters fL;R. We will focus on the case where
f ¼ fL ¼ −fR, and unless otherwise stated f ¼ 0.5.
One reservoir has an abundance of spin excitations and
forces the adjacent spin into a statistical mixture of
predominantly up hσ̂zLi ¼ f, while the other has an abun-
dance of excitation holes and forces the adjacent spin into a
statistical mixture of predominantly down hσ̂zRi ¼ −f. If
f > 0, on average, spin excitations are created on the left,
transported through the chain, and decay on the right,
resulting in a current flowing from left to right. However, if
f < 0, the current will tend to flow from right to left.
The reservoirs will induce currents and generally bring

the system out of equilibrium. However, after sufficient
time, it will reach a steady state (ss), ð∂ρss=∂tÞ ¼ 0. To
quantify the spin transport in the steady state, we define the
spin current [20,21] as J ¼ trðĵLρ̂ssÞ ¼ trðĵRρ̂ssÞ, where
ĵL¼2Jðσ̂xLσ̂y1;1− σ̂yLσ̂

x
1;1Þ and ĵR ¼ 2Jðσ̂xN;nN

σ̂yR − σ̂yN;nN
σ̂xRÞ.

Note that if the same excitation energy is added to all spins,
Ĥ → Ĥ þ ðω=2ÞPα σ̂

z
α, the spin current and the theory

presented here would be identical. In this case, the spins L
and R act as filters, allowing only excitations of frequency
ω to pass. This ω could be an intrinsic excitation energy or
a homogeneous magnetic field over the entire system.
A single chain.—First, we study the simplest case with

N ¼ 1 chain of n1 ¼ 2 spins coupled strongly to each other
with coupling strength U1 and with no anisotropy ΔU1

,
ΔJ ¼ 0. This gives a total chain of four spins described by
σ̂L, σ̂1;1, σ̂1;2, and σ̂R similar to the example in Fig. 1. For
this system, an analytical solution can be found for f ¼ 0.5.
The steady state current for U1 ≫ J and 0 ≤ h ≤ 2U1 can
be found to be

J ðJ;U1; hÞ ≈
h2 þ 17U2

1
2
J2 ðh2 −U2

1Þ2 þ 3
4
ð11h2 þ 43U2

1Þ
J:

The exact current [27] is plotted for different values of U1

in Fig. 2(a). The largest current is obtained for h ¼ �U1,
where the current is J ðh ¼ �U1Þ ¼ 4

9
J and, thus, inde-

pendent of U1. Furthermore, for no magnetic field h ¼ 0,
the current is J ðh ¼ 0Þ ∼ ð17J2=2U2

1ÞJ to lowest order in
J=U1 and, thus, heavily suppressed for large U1. We
therefore get giant magnetoresistance even for this minimal
model. To explain this, we first diagonalize Ĥ0 to

FIG. 1. Illustration of the model with an example consisting of
N ¼ 2 chains, the first containing n1 ¼ 3 spins and the second
n2 ¼ 2 spins. The setup is coupled to spin reservoirs at each end,
one with an abundance of spin excitations (left) and one with an
abundance of spin excitation holes (right). The exchange
coupling between the spins in the first chain is U1, while the
exchange between the spins in the second chain is U2. The ex-
change between the two chains and outer spins is J. The
numbering is shown below the spins, and the magnetic field is
shown with red arrows.
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obtain the four states j↓↓i, jΨþi, jΨ−i, and j↑↑i for spin
(1,1) and (1,2) with corresponding energies E↓↓ ¼ −2h,
EΨ−

¼ −2U1, EΨþ ¼ 2U1, and E↑↑ ¼ 2h, where
jΨ�i ¼ ðj↑↓i � j↓↑iÞ= ffiffiffi

2
p

. Next, we write the total
Hamiltonian Ĥ in the single excitation basis j↑↓↓↓i,
j↓Ψþ↓i, j↓Ψ−↓i, and j↓↓↓↑i:

H ¼ 2

0
BBBBBBB@

−h Jffiffi
2

p Jffiffi
2

p 0

Jffiffi
2

p U1 0 Jffiffi
2

p

Jffiffi
2

p 0 −U1 − Jffiffi
2

p

0 Jffiffi
2

p − Jffiffi
2

p −h

1
CCCCCCCA
:

These four states are, therefore, eigenstates with the
diagonal being the corresponding eigenenergies of the
Hamiltonian to lowest order in J=U1. For a spin excitation
created at one end to propagate to the other end, it needs to
pass the middle two spins. This is suppressed if the energies
of an excitation at either end and an excitation at the middle
chain are far from resonance with each other [28]. This also
corresponds to an excitation being localized, whereas on
resonance, for h ¼ �U1, an excitation becomes delocalized
over all four spins. Delocalization is known to result in
large conductivity within the random dimer model [30].
We would therefore expect maxima in the spin current for
h ¼ �U1 as is also observed in Fig. 2(a). Remarkably, we

see only peaks in the spin current at these two values.
Because of the baths, we can expect multiple excitation
states to be important. For the simple case of n1 ¼ 2, these
can easily be included. An excitation at the left spin can
also propagate to the middle two spins through the two
transitions

j↑Ψ�↓i ↔ j↓↑↑↓i:

These are likewise at resonance for h ¼ �U1, explaining
why only two resonances are observed.
Multiple chains.—Keeping ΔUi

, ΔJ ¼ 0, there are two
natural extensions of this, both of which are explored in
Figs. 2(b) and 2(c). First, we look at a different number of
chains N while keeping ni ¼ 2. We also set all the strong
exchange couplings equal Ui ¼ U1. The individual
strongly coupled chains diagonalize just as before, and
we therefore still expect the strongest current for h ¼ �U1.
The current both off (h ¼ 0) and at (h ¼ �U1) resonance is
plotted for a different number of pairs N in Fig. 2(b). Off
resonance, the spin current is heavily suppressed at first but
then levels out for larger N, whereas on resonance the
current is almost constant. In the limit N ≫ 1, we likewise
expect suppressed current for h ¼ 0 and a larger current for
h ¼ U1. If instead ni and Ui are all picked at random, most
segments will be off resonant for any h and the current
should be suppressed. Therefore, excitations cannot pass
between segments similar to Anderson localization.
Next, we keep N ¼ 1 and instead vary n1. Following the

same process as before, we first diagonalize Ĥ0. Let jni be
the single excitation state with spin ð1; nÞ flipped. Keeping
to this one excitation basis, the Hamiltonian H0 can be
written as

H0¼

0
BBBBBBBB@

ð2−n1Þh 2U1 0 � � � 0

2U1 ð2−n1Þh 2U1 � � � 0

0 2U1 ð2−n1Þh � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � ð2−n1Þh

1
CCCCCCCCCA
:

One can show that the eigenenergies become [31,32]

Ek ¼ 4U1 cos

�
πk

n1 þ 1

�
þ ð2 − n1Þh; 1 ≤ k ≤ n1:

The corresponding states become eigenstates for Ĥ to
lowest order in J=U1. The states j↑↓↓…i and j…↓↓↑i
have energy −hn1 to lowest order. Therefore, an excitation
at the ends is resonant with an excitation in the chain when
h ¼ 2U1 cos ½πk=ðn1 þ 1Þ� for 1 ≤ k ≤ n1. For n1 ¼ 2, this
reduces to h=U1 ¼ �1 as expected. As a few more
examples, we get h=U1 ¼ 0, � ffiffiffi

2
p

for n1 ¼ 3 and the

FIG. 2. (a) J as a function of h=U1 for a simple model of only
N ¼ 1 chain consisting of n1 ¼ 2 strongly coupled spins. (b) J
as a function of the number of chains N each consisting of ni ¼ 2
strongly coupled spins both on resonance h ¼ U and off
resonance h ¼ 0. For this, Ui ¼ U1 ¼ 5J was used. (c) J as
a function of h=U1 for a single chain (N ¼ 1) consisting of a
different number of strongly coupled spins n1 interacting with an
exchange of U1 ¼ 10J. The expected resonances are shown with
vertical dashed lines (see the text).
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four solutions h=U1 ¼ �ð ffiffiffi
5

p � 1Þ=4 for n1 ¼ 4. The spin
current is plotted for these three examples in Fig. 2(c), and
the resonances found above are plotted with vertical dashed
lines. The maxima in the current occur at the resonances as
expected, while the current is suppressed away from them.
Once again, we observe maxima only at the values found
above even though our analysis includes only single
excitation states. Like for the simple case, the entire
Hilbert space for the strongly interacting spins could be
included, but this becomes increasingly difficult as n1
increases. We have checked numerically that all resonances
occur at h ¼ 2U1 cos ½πk=ðn1 þ 1Þ� for 1 ≤ k ≤ n1 for all
cases n1 ≤ 15; see Supplemental Material for more details
[33]. Especially for jhj > 2U1 cos ½π=ðn1 þ 1Þ� is the cur-
rent heavily suppressed. In the thermodynamic limit
n1 ≫ 1, the single excitation spectrum for the strongly
interacting chain approaches a continuum in the interval
−4U1 < Ek < 4U1, and an appreciable current is expected
for −2U1 < h < 2U1, while a hard dropoff should occur
for jhj > 2U1.
In the more general case, we look at N ¼ 2 chains

consisting of n1 ¼ 3 and n2 ¼ 2 strongly coupled spins,
respectively, as seen in Fig. 1. At first, we keep U1 ≠ U2.
The first chain will then be at resonance with the ends for
h=U1 ¼ 0, � ffiffiffi

2
p

, while the second chain will be at
resonance with the ends for h=U2 ¼ �1. However, only
when both the chains individually are at resonance with
each other so that a spin excitation can propagate between
them do we expect the largest current. This is the case when
both of the above conditions are upheld or rather when
U2 ¼ � ffiffiffi

2
p

U1 orU2 ∼ 0. To see that this is true, we plot the
current as a function of both U2=U1 and h=U1 in Fig. 3(b)
with the expected resonances plotted as dashed lines. Here
we see that lines of high current run along the expected
lines and that the current is extra large when the resonances
meet. To illustrate the role of the single excitation spectrum
explored above, we set U1 ¼ U2 ¼ U and plot both the
current and the single excitation spectrum as a function of
h=U in Figs. 3(c) and 3(d), respectively. Again, we plot the
expected resonances with dashed lines. The two eigen-
energies that are linearly dependent on h=U corresponds to
eigenstates that are close to j↑↓…↓i and j↓…↓↑i, whereas
the others are close to eigenstates that correspond to a spin
excitation within the strongly coupled chains. Here it is
clearly seen that, when the energies of the states describing
excitations at the ends cross the energy of the states with
excitations within the chains, a higher current is observed.
Hence, we see that the giant magnetoresistance is attributed
to a set of resonance conditions that can be predicted for
particular setups. This leads to several generalizations.
First, for a large number of strongly interacting chains
N ≫ 1 with a random number of spins ni, the excitation
will be scattered at most boundaries, thus resulting in poor
conductivity. Second, if the spins L and R are substituted
for general systems, a resonance will be observed when the

frequencies of these systems are resonant with the neigh-
boring strongly interacting chain.
We address the question of sensitivity to the nature of the

bath parameter f in Fig. 3(a). Here it is seen that the current
depends linearly on f, and, therefore, the effects studied
above will be present for any f > 0.
Including Z-coupling.—Finally, we include anisotropy

for a model of only N ¼ 1 chain of n1 ¼ 3 strongly
interacting spins in Fig. 3(e). The addition of anisotropy
has two main effects. First, the spectrum is perturbed,
moving and splitting up the resonances. Second, a new
peak appears for h=U1 ∼ 2

ffiffiffi
2

p
due to the transition

j↑Λ↑↓↓↓i → j↓Λ↑↑↓↓i → j↓Λ↑↓↓↑i, where

jΛ↑↓↓i ¼
1

2
ðj↑↓↓i −

ffiffiffi
2

p
j↓↑↓i þ j↓↓↑iÞ þOðΔU1

Þ;

jΛ↑↑↓i ¼
1

2
ðj↑↑↓i þ

ffiffiffi
2

p
j↑↓↑i þ j↓↑↑iÞ þOðΔU1

Þ

to lowest order in ΔU1
. The matrix element for the first

transition is

h↓Λ↑↑↓↓jĤj↑Λ↑↓↓↓i ¼ −
ΔU1

4
þOðΔ3

U1
Þ:

For this, higher-order terms of jΛ↑↓↓i and jΛ↑↑↓i
were included. The matrix element is zero for ΔU1

¼ 0,

FIG. 3. (a) J as a function of the bath parameter f for the
system illustrated in Fig. 1 with U1 ¼ U2 and h ¼ 0. (b) J as a
function of h=U1 and U2=U1 with U1 ¼ 5J as illustrated in
Fig. 1. The dashed lines show the expected resonances for both
the first chain h=U1 ¼ 0,� ffiffiffi

2
p

and the second chain h=U2 ¼ �1.
Single excitation spectrum (c) and current J (d) plotted for the
system illustrated in Fig. 1 with U1 ¼ U2 ¼ 10J. The expected
resonances are shown with dashed lines for h=U1 ¼ 0,�1,� ffiffiffi

2
p

.
(e) J as a function of h=U1 for a model of only N ¼ 1 chain
consisting of n1 ¼ 3 strongly interacting spins with hopping
U1 ¼ 10J and anisotropy ΔJ ¼ ΔU1

.
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explaining why the resonance is absent for this case.
The transition is at resonance for h=U1 ¼ 2

ffiffiffi
2

p ½1þ
ðΔ2

U1
=16Þ þOðΔ4

U1
Þ�. The effects of including anisotropy

is further studied in Supplemental Material [33].
Conclusion.—We have shown how a system of weakly

interacting layers of strongly coupled spins exhibits the
defining quality of giant magnetoresistance; i.e., we can
control the spin current in the chain by applying external
magnetic fields. This is caused by reflection of spin
excitations at the boundaries between the strongly coupled
regions when a mismatch in the energy levels is present. We
show that the effect is present even in the simplest case of
four spins by obtaining an analytical expression for the spin
current, and we propose a method for finding large current
resonances in a general chain. This provides a simple
picture for understanding and predicting giant magneto-
resistance in spin chains. The spin model studied here is
generic with many implementation possibilities including
neutral atoms in optical lattices [37,38], phosphorus-doped
silicon surfaces [23,39], or superconducting circuits [40]. A
possible implementation using superconducting circuits is
proposed in Supplemental Material [33].
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