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We establish the appearance of a qualitatively new type of spin liquid with emergent exceptional points
when coupling to the environment. We consider an open system of the Kitaev honeycomb model
generically coupled to an external environment. In extended parameter regimes, the Dirac points of the
emergent Majorana fermions from the original model are split into exceptional points with Fermi arcs
connecting them. In glaring contrast to the original gapless phase of the honeycomb model that requires
time-reversal symmetry, this new phase is stable against all perturbations. The system also displays a large
sensitivity to boundary conditions resulting from the non-Hermitian skin effect with telltale experimental
consequences. Our results point to the emergence of new classes of spin liquids in open systems that might
be generically realized due to unavoidable couplings with the environment.

DOI: 10.1103/PhysRevLett.126.077201

Quantum spin liquids are low-temperature phases of
matter with fractionalized excitations and emergent gauge
fields [1–5]. Efforts at identifying possible spin liquids
have led to hundreds of candidates due to the various
possible symmetries present in lattice systems. However, a
broader view of the nature of the fractionalized excitations
and gauge field leads to only a few prominent types [2],
some of which are realized in exactly solvable models [6–
14]. Here, we show that coupling a spin liquid to an
environment can lead to a qualitatively new kind of phase
that cannot occur in any closed system.
Dissipative systems can display unusual phenomenology

not seen in closed systems. These range from unusual phase
transitions and critical phases [15–18] to new topological
phases [19–22]. One prominent class of phenomena can be
understood in regimes where a non-Hermitian description
[19,20,23–28] of the system is appropriate. This allows for
the appearance of exceptional points in the spectrum when
two eigenvectors coincide [29–32]. In noninteracting sys-
tems, band crossings with such exceptional points result in
an unconventional square-root dispersion at low energies as
opposed to a typical Dirac dispersion as seen in graphene.
These band crossings in two-dimensional (2D) systems are
generic, unlike the accidental symmetry-protected cross-
ings in graphene [19,22]. The conventional bulk-boundary
correspondence is also shown to be broken due to an exotic
non-Hermitian skin effect [33–40], which results in

localization of all eigenstates at the boundary. This results
in an exponential sensitivity of the system to boundary
conditions. Based on work of free systems, interest is now
drawn to understanding effects in interacting systems
[16,41–46]. It is then natural to ask how the emergent
phenomena in strongly correlated spin liquids look like
when the system is described by such an effective non-
Hermitian Hamiltonian.
In this Letter, we show that these phenomena can be

realized in an interacting spin model, giving rise to a
qualitatively new kind of spin liquid. We illustrate this by
coupling the Kitaev honeycomb model [7] to an environ-
ment (Fig. 1, left panel). In certain regimes, the two
Dirac points generically split into four exceptional points

FIG. 1. Left: The lattice of the Kitaev honeycomb model. The
spins are coupled through Jασαjσ

α
kðα ¼ x; y; zÞ. The coupling to

the environment is described by jump operators Lα
jk. Right:

The three-dimensional (3D) spectrum diagram for the
non-Hermitian Kitaev honeycomb model at Gx ¼ 2, Gy ¼ 1,
Gz ¼ 2.5 expðiπ=3Þ. The Fermi arc (ReE ¼ 0) is labeled with the
red line, and the green line indicates the ImE ¼ 0 curve.
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(Fig. 1, right panel). The four exceptional points are paired
up, with each pair connected through Fermi arcs reminis-
cent to those found in Weyl semimetals [47] but occurring
in the bulk rather than on the boundaries of the system.
Unlike the closed system where the ferromagnetic spin
liquid and the antiferromagnetic spin liquid are separated
by a nodal-line critical point, the open system can go from
one to the other by splitting and recombination of excep-
tional points. Moreover, the only way to produce a gap is to
bring the exceptional points together: again, similar to Weyl
points in 3D. Thus, the coupling to the environment
elevates a symmetry-protected gapless spin liquid to a
generically stable phase, which we term an exceptional spin
liquid. We also show the occurrence of the skin effect on
open zigzag boundaries leading to a large sensitivity on
boundary conditions. Finally, we show that the phenomena
are naturally expected to arise in potential realizations of
the honeycomb model, such as those proposed in cold
atoms and ion traps.
Model.—The Kitaev honeycomb model [7] is defined

through compass interactions linking directions in spin
space and real space of the spin 1=2:

H0 ¼ −
X
hjkiα

Jασαjσ
α
k; ð1Þ

where hjkiα labels the lattice (Fig. 1), and α ¼ x, y, z labels
the three types of links of a hexagonal lattice with σα as the
corresponding Pauli matrices.
We consider an open system where the Kitaev

Hamiltonian is coupled to an environment. The resulting
open system is described by a Lindblad master equation
[48] for the density matrix

d
dt

ρ ¼ −i½H0; ρ� þ
X
hjkiα

γα

�
Lα
jkρL

α†
jk −

1

2
fLα†

jkL
α
jk; ρg

�
; ð2Þ

where Lα
jk are jump operators describing how the system is

coupled to the bath, and we have set ℏ ¼ 1. The dynamics
can be interpreted in terms of deterministic evolution of a
trajectory (wave function) described by an effective non-
Hermitian Hamiltonian

HNH ¼ H0 − ði=2Þ
X
hjkiα

γαL
α†
jkL

α
jk;

interspersed with quantum jumps to different states through
the Lα

jkρL
α†
jk term [49–52]. Thus, when we are measuring at

times before the first jump, the dynamics is governed by the
non-Hermitian Hamiltonian HNH. This can be interpreted
as a measurement backaction in settings where realizations
of the model system are postselected to consider only cases
where the jump has not occurred [51–55].
Although the general phenomenology of what follows is

largely independent of the form of the jump operators, we

consider here jump operators Lα
jk ¼ σαj þ σαk along each α-

type link j − k for illustration. Similar results can be
obtained by considering the effect of dephasing noise
[56]. This results in an effective non-Hermitian description
of the form of Eq. (1) but with the coupling constants being
complex, and henceforth labeled by Gα ¼ Jα þ iγα.
This model is exactly solved through an enlarged
Majorana representation of the spin operators. Intro-
ducing four Majorana fermions ðcj; bxj ; byj ; bzjÞ at each site,
the spin is represented as σαj ¼ icjbaj . The physical state is
constrained by the condition Djjphysi ¼ jphysi, with
Dj ¼ bxjb

y
jb

z
jcj. Defining bond operators ujk ¼ ibαj b

α
k ,

where α is the type of link j − k, the effective model is

HNH ¼ −
X
hjkiα

Gασ
α
jσ

α
k ¼ i

X
hjkiα

Gαujkcjck: ð3Þ

The bond operator ujk is a constant of motion in the
enlarged Majorana representation. Meanwhile, a physical
conserved quantity is the product of ujk around a
plaquette p,

Wp ¼
Y

j−k∈p
ujk:

The eigenvectors can thus be grouped into different sectors
of the eigenvaluesWp ¼ �1. The sector with allWp ¼ 1 is
viewed as vortex free, and Wp ¼ −1 means a Z2 vortex
at p.
The eigenstates of the model can be decomposed into

differentZ2-flux sectors as in the original Hermitian model,
where the zero flux is the relevant one at low (real) energies
due to Lieb’s theorem [7,57]. In fact, the zero-flux sector is
still relevant for the open systems in appropriate regimes
where all the phenomenology we discuss is realized. To
illustrate this, consider the Hermitian model at temperatures
much lower than the vison gap. If we consider multiplying
it by an overall complex number, there is a parametric
separation in lifetimes of states between different flux
sectors, and the zero-flux sector corresponds to states with
the longest lifetimes. In the Supplemental Material, we
provide numerical evidence that this also holds true in more
general cases [58].
In the zero-flux sector, we can choose ujk ¼ 1 for j

on one sublattice and k on the other. The Hamiltonian
becomes a tight binding Majorana model in momentum
space as

H̃¼
X

q
0
�
c−q;1c−q;2

��
0 iAðqÞ

−iAð−qÞ 0

��
cq;1
cq;2

�
; ð4Þ

where in the primed summation

X0
;
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we count the pair q;−q only once. This is because
c−q ¼ c†q. The off-diagonal element is AðqÞ ¼
2ðGxeiq·r1 þ Gyeiq·r2 þ GzÞ, and the subscripts 1 and 2
label the two sublattices of the honeycomb system.
The momentum-space operators satisfy fcq;λ; c−q0;γg ¼
δq;q0δλ;γ . Depending on whether AðqÞ can go to zero, the
system exhibits a gapped or a gapless phase. In the
Hermitian model, the gapped phase is equivalent to a toric
code spin liquid [6], whereas the gapless phase can possess
non-Abelian statistics in the presence of a magnetic field
[7]. The gapless condition is given that the lengths jGxj,
jGyj, and jGzj admit a triangle:

jGxj ≤ jGyj þ jGzj; jGyj ≤ jGxj þ jGzj; jGzj ≤ jGxj þ jGyj:
ð5Þ

Exceptional points and Fermi arcs.—The spectrum is
obtained by the eigenvectors of the matrix [Eq. (4)]:
E2ðqÞ ¼ AðqÞAð−qÞ. In the Hermitian case, there are
two Dirac points inside the gapless region. We show
that for complex Gα, the band-touching points have a
square-root dispersion and are exceptional points.
For convenience of computation here, we can extract out

the phase of Gz as an overall phase of H̃, and so the
Hamiltonian is now parameterized by ϕ̄x ¼ ϕx − ϕz and
ϕ̄y ¼ ϕy − ϕz. In the Brillouin zone, it is more convenient
to parametrize as q ¼ q1q̃1=ð2πÞ þ q2q̃2=ð2πÞ, where q1

and q2 are the reciprocal lattice vectors. The values q̃1 and
q̃2 uniquely fix the vector q (notice that we should take q̃1,
q̃2 mod 2π). Zero energy at q implies AðqÞ ¼ 0 or
Að−qÞ ¼ 0. The AðqÞ ¼ 0 condition gives q̃1 and q̃2:

q̃1ð2Þ ¼ � cos−1
�jGyðxÞj2 − jGzj2 − jGxðyÞj2

2jGxðyÞjjGzj
�
− ϕ̄xðyÞ ð6Þ

with the constraint Gx sinðq̃1 þ ϕ̄xÞ ¼ −Gy sinðq̃2 þ ϕ̄yÞ to
fix the � signs above. These equations admit, at most,
two solutions; and we denote them as qe and q0

e. In the
Hermitian situation, one has A�ðqÞ ¼ Að−qÞ and qe ¼ −q0

e
as ϕ̄x ¼ ϕ̄y ¼ 0. Linearizing A, it directly follows that we
have Dirac points with a conventional linear dispersion
away from the degeneracies.
For complex (i.e., non-Hermitian) parameters, we have

A�ðqÞ ≠ Að−qÞ and qe ¼ −q0
e − 2ðϕ̄x; ϕ̄yÞ. Now, AðqÞ and

Að−qÞ vanish at different points, implying four E ¼ 0
exceptional points �qe and �q0

e at which the Hamiltonian
matrix becomes nondiagonalizable and the two eigen-
vectors coincide. The dispersion near the exceptional points
takes a square-root form instead of the conic form
since AðqÞ and Að−qÞ do not vanish simultaneously.
The ReE ¼ 0 branch cuts associated with the square roots
have a natural interpretation as bulk Fermi arcs, and the
exceptional points are connected by these Fermi arcs
and their imaginary counterparts ImE ¼ 0 (cf. Fig. 1, right
panel).
When the coupling constants are tuned out of the triangle

regime [Eq. (5)], the four exceptional points fuse into two
exceptional points and then disappear. A cut at Gx ¼ 2 and
Gy ¼ 1 for different complex Gz is shown in Fig. 2, where
we also plot the absolute energy jEj and its real part ReE at
different Gz. One can see the splitting of each Hermitian
band-touching point into two non-Hermitian exceptional
points. At the phase boundary, the branch cut for E
disappears. In this situation, the band-touching point is

B

A

A
Hermitian

Boundary

FIG. 2. The spectrum and phase diagram for the non-Hermitian Kitaev honeycomb model at Gx ¼ 2, Gy ¼ 1. The gray region B
admits band-touching points, whereas region A possesses a (complex) gap. Six values of Gz are taken to exhibit different dispersions
with respect to q as in Fig. 1. For the Hermitian situation (the star), around the band-touching point, E ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβδqαδqβ

p
with coefficients

gαβ. At the Hermitian phase boundary (the square), the dispersion is quadratic along a certain direction E ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgαδqαÞ4

p
with coefficients

gα. In the non-Hermitian situation (the two triangles), the dispersion is square-root E ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
g0αδqα

p
. At the non-Hermitian boundary (the

two circles), the energy is linear along some direction E ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0αβδqαδqβ

q
.
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not protected, and thus gets gapped out when crossing the
phase boundary. This illustrates how, similar to Weyl points
in 3D, the exceptional points can only be gapped out when
combined pairwise, which is in glaring contrast to the 2D
Dirac points that are inherently symmetry protected.
Skin effects.—Boundary conditions do not affect the

spectrum for Hermitian systems in the thermodynamic
limit, except for additional edge states. In contrast, non-
Hermitian systems display a strong sensitivity to boundary
conditions. To illustrate this, we consider Eq. (3) with two
parallel zigzag boundaries. We place the open boundary
condition perpendicular to the z-type link, which is along
the y direction. The x direction is still chosen to be periodic
with Nx unit cells. For convenience of comparison with the
periodic boundary condition (PBC), the number of layers
sandwiched by the two boundaries is taken to be even
M ¼ 4M0. The Hamiltonian is diagonal in the momentum
qx, and we denote the state by ψðmÞ with m as the layer
index. The boundary conditions require ψð0Þ ¼ 0 and
ψðM þ 1Þ ¼ 0. The question can be solved by a transfer
matrix method [58,59]. We group the wave functions into a
doublet ΨðmÞ ¼ ½ψð2mÞ;ψð2mþ 1Þ�. Then, the equation
of motion takes the form ΨðmÞ ¼ TΨðm − 1Þ, where T is
the transfer matrix (details in [58]). Each eigenstate ΨðmÞ
can be therefore constructed as a superposition of the two
eigenvectors of T, ΨðmÞ ¼ αsm1 Ψ1 þ βsm2 Ψ2, with Ψ1;2 as
the eigenvectors of T and s1;2 as the corresponding
eigenvalues, such that it satisfies ψð0Þ ¼ ψðM þ 1Þ ¼ 0.
If we consider Hermitian couplings, then js1j ¼ js2j ¼ 1
and the eigenstates propagate into the bulk. However, in the
non-Hermitian situation, s1 ≃ s2 are either both larger or
smaller than one, and the states are piled up against one of
the boundaries. These are known as the non-Hermitian skin
effects [33,34]. The general criterion for the skin effect is
when js1s2j is given by

j detTj ¼ jGxeiqxa þGyj
jGxe−iqxa þ Gyj

≠ 1: ð7Þ

In this case, all eigenstates are exponentially localized to
the boundary ψðmÞ ∼ expð−m=lÞ, with l ¼ ðln j detTjÞ=2.

We see that this occurs when the relative phase ϕx − ϕy is
nonzero. By rotation symmetry, we can draw the con-
clusion that for two parallel zigzag open boundaries
perpendicular to α-type links, the skin effects can be turned
on by giving a nontrivial relative phase ϕβ − ϕγ , where
β, γ ≠ α.
In Figs. 3(a)–3(c), we show the open-boundary-condi-

tion (OBC) spectra for different constants. The average
localization of the wave function

m̄ ¼
X

mjψðmÞj2

is indicated with the color plot. For a nonvanishing
ϕx − ϕy, as in Fig. 3(a), in addition to the zero-energy
boundary state, the bulk states are also piling up the m ¼ 1
boundary, exhibiting the skin effects. The localization shifts
from one boundary to the other at qx ¼ 0, π, in accordance
with Eq. (7). The spectrum is strikingly different from the
PBC spectrum. For a vanishing ϕx − ϕy and nonvanishing
ϕz, we can, however, see in Fig. 3(b) that there is no skin
effect despite the presence of bulk exceptional points; and
the OBC spectrum coincides with the PBC spectrum.
Figure 3(c) shows a Hermitian example contrasting with
the novel non-Hermitian behaviour.
Discussion.—We have shown in this Letter that genuinely

non-Hermitian phenomenology, exceptional points, and skin
effects intriguingly conspire with fractionalization in the
interacting Kitaev honeycomb model in dissipative environ-
ments. This results in a qualitatively new type of non-
equilibrium matter that we call exceptional spin liquids,
which by its dissipative nature lies beyond earlier classifica-
tion schemes and potentially displays new dynamics beyond
current spin liquids [60–63]. Remarkably, this new phase is
generic in the sense that it does not rely on any underlying
symmetries—this may in fact greatly facilitate the prospects
for observing gapless spin liquids in synthetic setups.
The exceptional points can naturally arise in many of

the proposed realizations of the Kitaev honeycomb model
[64–69]. Two concrete mechanisms involve incorporating
effects of a self-energy [70] and a postselection procedure
[51,52,54,71] on synthetic realizations. The material

(a) (b) (c)

FIG. 3. The spectra of the system for OBC (colored) and PBC (light gray) as well as the corresponding average localization of the
eigenstates. (a) A non-Hermitian skin effect occurring due to the nontrivial relative phase ϕx − ϕy ≠ 0ðmod πÞ. (b) The skin effect does
not occur if only Gz is tuned complex while ϕx − ϕy ¼ 0ðmod πÞ. (c) The Hermitian case, where the PBC and OBC spectra overlap,
except for the edge mode. All results are obtained for a M ¼ 80-row lattice.
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candidates for the Kitaev honeycomb model could poten-
tially realize this non-Hermitian phenomenology if the
effects of excitations such as phonons are taken into
account. Here, we expound on the postselection procedure
in a synthetic optical lattice system of ultracold atoms. Such
systems are unavoidably subject to dissipative effects, most
notably from spontaneous emission and inelastic collisions
[72,73]. As mentioned above [Eq. (2)], the absence of
quantum jumps from such processes leads to a measure-
ment backaction [51–55] resulting in a non-Hermitian
evolution. If spontaneous emission is the dominant dis-
sipative mechanism, the procedure is implemented by a
continuous measurement of the system to monitor for
emitted photons and a postselection on those realizations
where no photons are observed.
Considering 87Rb atoms with a typical magnetic scale of

100 Hz, the scattering rate due to spontaneous emission is a
few hertz. It is dependent on the detuning Δ of the laser as
Δ−2, and can hence be tuned appropriately across a wide
range from milliseconds to many minutes [74]. Further
tuning can be achieved by using different transitions in the
same or different atoms since the spontaneous emission rate
goes as ω3

0, where ω0 is the transition energy. The losses
due to inelastic collisions can also be tuned through
techniques such as external confinement, Feshbach reso-
nance, and photoassociation [72]. The Kitaev honeycomb
model can be realized with hyperfine states and a spin-
dependent potential [64]. Using different detunings for the
different lasers creating the lattice can then result in
the direction-dependent Lindblad operators necessary for
the phenomenology here. Although it would seem benefi-
cial to have a detuning that is as large as possible, since that
would lead to a bigger separation of the exceptional points,
it is practically limited by the transition frequency.
More importantly, it also makes the postselection procedure
more difficult since the Poissonian decay process means
that the probability of a decay not occurring would be
∼e−Nγ=δ, where γ is the noise rate, N is the number of spins,
and δ is the imaginary part of the many-body gap. Hence,
the primary challenge would be to resolve the exceptional
points due to a small separation. Choosing parameters
such that the zero-flux sector has the longest lifetime
(see Supplemental Material [58]) would give an enhance-
ment to the naive lifetime and might allow one to
choose larger noise rates to better resolve the exceptional
points.
The exquisite control and ubiquitous presence of dis-

sipation in the suggested synthetic implementations of our
ideas might even open the door for novel technological
applications such as ultrasensitive sensing devices based on
harnessing the non-Hermitian skin effect [75] by judi-
ciously manipulating the boundary conditions.
As strongly correlated many-body states exhibit a rich

variety of emergent phenomena, such as non-Abelian
statistics, the study of their interplay with genuinely

non-Hermitian effects as advanced here is likely to provide
fertile ground for new fundamental discoveries.
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