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Force reconstruction in dynamic force microscopy (DFM) is a nontrivial problem that requires the
deconvolution of integrals. However, conventional reconstruction methods, which recover forces from
single-frequency motion of the cantilever at its resonance, exhibit non-negligible error and reconstruction
instability in the highly nonlinear force regime when the tip oscillates with its amplitude comparable to the
decay length of the interaction. Here, we develop a theoretical platform of DFM based on multiharmonic
signal analysis for exact and robust reconstruction of conservative and dissipative forces, valid for all
oscillation amplitudes and entire tip-sample distances in both amplitude- and frequency-modulation atomic
force microscopy. We achieve accuracy improvement by an order of magnitude for oscillation amplitudes
comparable to or larger than the decay length, and by 2 orders of magnitude for smaller amplitudes at the
force minimum, even in cases where conventional methods show poor accuracy (≳5%). Moreover, we
obtain greater robustness with respect to the oscillation amplitude error, resulting in a fivefold increase in
reconstruction precision. Our results demonstrate a fast and versatile reconstruction scheme for nano-
mechanical force characterization, with higher harmonics measured with sufficient signal-to-noise ratio,
which provides unprecedented accuracy and stability beyond conventional methods.
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Introduction.—The invention of atomic forcemicroscopy
(AFM) [1] has opened the doors to quantitative characteri-
zation of the structures and forces at the molecular and
atomic level [2–4]. The high resolution is achieved by using
a sharp probe tip attached at the end of the cantilever, whose
deflection is monitored during its gradual approach to the
surface. The need for a higher signal-to-noise ratio (SNR)
and greater sensitivity to the short-range forces has led to the
introduction of dynamic forcemicroscopy (DFM)where the
oscillating motion of the AFM probe is detected as it is
driven externally. Employing AFM in the dynamic mode,
however, requires the calculation of the interaction forces
from the acquired experimental data depending on the
operating scheme: amplitude-modulation AFM (AM-
AFM) [5] or frequency-modulation AFM (FM-AFM) [6].
Force reconstruction in DFM is a nontrivial problem since

it involves the inversion of integrals. Previous works pro-
posed the use of iterative calculations [7,8],matrix inversions
[9], infinite summations of higher order derivatives [10], and
Chebyshev polynomials [11]. Yet, such methods suffer from
limited practicality and/or underperformance because they
generally require heavy calculations to achieve good accu-
racy [12,13]. In practice, the integrationmethod of Sader and
Jarvis [14], called the Sader-Jarvis (SJ) method, has been
most widely used in both FM-AFM [14] and AM-AFM
[12,15] operations, since it provides good approximation to
the underlying forces using simple integrals.

Regardless of its wide usage, however, the SJ method has
recently been reported to yield a non-negligible error and
exhibit reconstruction instabilitywhen the oscillation ampli-
tude is comparable to the decay length, λ, of the interaction
forces [12,14,16–18]. A strategy to “bypass” this problem
would be to use amplitudes smaller or larger than λ despite
the requirement of additional experimental procedures to
identify (possibly multiple) λ’s [18,19], which are generally
not known a priori. However, there is a trade-off: since such
a bypass strategy sacrifices both the SNR [20] and the
sensitivity to the short-range forces [6], one requires not only
costly instruments and long data acquisition times to achieve
low noise, but also excessive experimental procedures to
isolate the short-range contributions from the measured
forces. Indeed, to optimize the signal measurement, ampli-
tudes comparable to λ have been used in numerous experi-
ments, particularly in recent research in condensed-matter
physics [21–25]. Nonetheless, when such amplitudes are
used, conventional force-reconstruction procedures fail to
accurately recover the force in a reliable manner. This is due
to the discrepancy between the assumption used in the
reconstruction formulas (i.e., single-frequency cantilever
motion at resonance) and the actual cantilever dynamics
which can become significantly anharmonic, especially in
the rapidly changing regime of the force. Therefore, one still
needs an accurate and robust force reconstruction platform
for DFM, valid in the entire range of amplitudes.
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In multiharmonic AFM (MHAFM), the anharmonicity
of the cantilever motion is used to enhance the capability of
the conventional DFM. The higher harmonic signals are
simultaneously detected in AM-AFM or FM-AFM oper-
ations to attain greater spatial resolutions [26–29] and
characterize the local properties in more detail [30–33].
Several works used additional modulation techniques to
extract nonlinear dependence of the tip-sample interactions
[34–36]. While understanding higher harmonic motions in
DFM is crucial for overcoming the “pothole” in conven-
tional force reconstructions, theoretical formulations of
MHAFM remain incomplete; existing analytical expres-
sions for higher harmonic signals of arbitrary harmonic
order are derived only for high-vacuum FM-AFM oper-
ations [37], still requiring a general framework for both
MHAFM modes to resolve the “pothole.”
In this Letter, we develop a versatile MHAFM platform

for exact, robust, and efficient force reconstruction. First,
we provide analytical formulas for higher harmonic
responses in DFM, which we then invert to derive explicit
reconstruction formulas for conservative and dissipative
forces, valid for all oscillation amplitudes and the entire tip-
sample distances. Analytic expressions of these formulas
are derived separately for each operation mode of DFM.We
demonstrate the exactness of our formulas by performing
force reconstruction for the Lennard-Jones–type force
model, and find that our approximate reconstruction results,
obtained by including only a finite number of harmonics,
show superior accuracy over the SJ method. Finally, the
robustness of our MHAFM force reconstruction scheme
against the oscillation amplitude error is demonstrated
using the Stillinger-Weber–type force model, which clearly
shows that our approach remarkably overcomes the force
inversion instability inherent in the conventional methods.
The motion of the cantilever probe in DFM is typically

modeled as a driven harmonic oscillator in the presence of
tip-sample interaction [10,14],

m̈ξþ b_ξþ kξ ¼ kAd cosωtþ Fint; ð1Þ

where ξ is the relative position of the probe with respect to
the equilibrium position, m the effective mass, b the
damping coefficient, and k the stiffness of the probe.
The coefficients on the left-hand side of the equation are
related to the unperturbed resonance frequency ω0 and the
quality factor Q, where b ¼ mω0=Q and k ¼ mω2

0. The
right-hand side of the equation represents the tip-sample
interaction force Fint and the external driving force with
driving amplitude Ad and frequency ω. As the cantilever
approaches the surface and Fint becomes noticeable, the
nonlinearity of Fint within the oscillation range leads to
the multiharmonic motion of the probe. Thus, ξ can be
described in terms of the relative distance z between the tip
and substrate atoms;

ξðz; tÞ ¼ ξ0ðzÞ þ
X∞
n¼1

AnðzÞ sin ½nωtþ θnðzÞ�; ð2Þ

where AnðzÞ and θnðzÞ denote the amplitude and phase,
respectively, of the nth harmonic motion and ξ0ðzÞ is the
mean deflection of the probe.
The interaction force can be decomposed into the

conservative and dissipative (nonconservative) terms,

Fintðz; _zÞ ¼ FcðzÞ þ Fncðz; _zÞ: ð3Þ
Combining Eqs. (1) and (3), we obtain the dissipation
energy of the probe for a single oscillation,

−ΔE ¼
Z

T

0

dt_ξFnc

¼
Z

T

0

dt_ξðm̈ξþ b_ξþ kξ − kAd cosωt − FcÞ; ð4Þ

which can be rewritten in terms of multiharmonic signals
as, using Eq. (2),

ΔE ¼ πk

�
AdA1 cos θ1 −

ω

Qω0

X∞
n¼1

n2A2
n

�
: ð5Þ

Note that the dissipation energy is fully expressed by the
multiharmonic responses, with no dependence on the
explicit form of Fnc. Moreover, it consists of the external
energy influx from the drive (the positive term) and the
internal dissipation energy (the negative terms), where the
higher harmonic terms (n > 1) reflect the additional inter-
nal dissipation due to the higher harmonic motions. Indeed,
the single amplitude approximation of Eq. (5) reduces well
to the previously reported results [6,10,38].
Now, we consider Fnc having explicit velocity depend-

ence of the form,

Fintðz; _zÞ ¼ FcðzÞ − ΓðzÞ_z; ð6Þ
where ΓðzÞ is the friction coefficient [37]. This particular
form is chosen for further investigation as it is one of the
most conventional and intuitive representation of the
dissipation force [10,12,37]. Inserting Eq. (6) to Eq. (1),
we obtain the following equation of motion for the probe:

mξ̈þb_ξþkξ¼ kAd cosωtþFcðzþξÞ−ΓðzþξÞ_ξ: ð7Þ
From this equation, we proceed to derive explicit force
reconstruction formulas, corresponding to the two
MHAFM operation modes.
Amplitude-modulation MHAFM.—In amplitude-

modulation MHAFM, the cantilever is driven at a constant
driving amplitude and frequency, with the responses at both
the driving frequency and its integer multiples being the
experimentally measured quantities. To proceed, we
assume jA1j ≫ jAnj for n > 1, corresponding to typical
MHAFM experimental observations [27,28,33]. Also, we
assume zþ ξ0 ≈ z in accordance with previous DFM
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literature [4,10], as themean deflection is negligiblewith the
use of stiff cantilevers. Integrating Eq. (7) with the weight
functions sinðnωtþ nθ1Þ and cosðnωtþ nθ1Þ gives,Z

π

0

dτ
π
Fcðzþ A1 cos τÞ cos nτ

¼ −δn1
�
kAd

2
sin θ1

�
þ 1

2
Re½ÃnH̃−1

n �; ð8ÞZ
π

0

dτ
π
Γðzþ A1 cos τÞ sin τ sin nτ

¼ δn1

�
kAd

2A1ω
cos θ1

�
−

1

2A1ω
Im½ÃnH̃−1

n �: ð9Þ

Here, δn1 is the Kronecker delta, Ãn ≡ Aneiθn and H̃n ≡
HðinωÞeinθ1i1−n, whereHðiωÞ≡ ðk −mω2 þ ibωÞ−1 is the
transfer function of the cantilever. Note that An and θn are
uniquely determined by the above equations for any positive
integer n.
Reconstruction of the force from the multiharmonic

responses requires inversion of the integrals in Eqs. (8)
and (9). Through several derivation steps (see Supplemental
Material SM1 [39]), we derive the exact expressions for Fc
and Γ using the multiharmonic signals,

FcðzÞ ¼
Z

∞

z
dz0

kAd

A1ðz0Þ
sin θ1ðz0Þ þ

X∞
m¼1

�
ð−1Þmð2m − 1Þ

×
Z

∞

z

dz0

A1ðz0Þ
Re½Ã2m−1ðz0ÞH̃−1

2m−1ðz0Þ�
�
; ð10Þ

ΓðzÞ ¼ kAd

A1ðzÞω
cos θ1ðzÞ

þ
X∞
m¼1

ð−1Þm
A1ðzÞω

Im½Ã2m−1ðzÞH̃−1
2m−1ðzÞ�: ð11Þ

Frequency-modulation MHAFM.—In FM-AFM, the
driving amplitude and frequency are controlled to ensure
fixed oscillation amplitude A1 at the resonance frequency
ωres (θ1 ¼ 0) by using feedback loops. Thus, frequency-
modulationMHAFMmeasures the resonance frequency shift
ΩðzÞ≡ ½ωresðzÞ − ω0�=ω0, driving amplitude AdðzÞ, and
higher harmonic responses Ãn ≡ Aneiθn . Using again the
assumptions of jA1j ≫ jAnj for n > 1 and zþ ξ0 ≈ z, we
multiply Eq. (7) by sinðnω0ð1þΩÞtÞ and cosðnω0ð1þΩÞtÞ,
and integrate to derive the equations for Ãn asZ

π

0

dτ
π
Fcðzþ A1 cos τÞ cos nτ ¼

1

2
Re½ÃnĤ

−1
n �; ð12Þ

Z
π

0

dτ
π
Γðzþ A1 cos τÞ sin τ sin nτ

¼ δn1

�
kAd

2A1ω0ð1þ ΩÞ
�
−

1

2A1ω0ð1þ ΩÞ Im½ÃnĤ
−1
n �:

ð13Þ

Here, Ĥn ≡H½inω0ð1þ ΩÞ�i1−n, different from H̃n in the
previous subsection. Solving Eqs. (12) and (13), we can
analytically derive the multiharmonic response Ãn up to an
arbitrary ordern. Note these expressions aremore general than
those previously reported [37], as the latter uses the low
bandwidth (Q ≫ 1) approximation.
The exact inversion formulas for the conservative and

dissipative forces are similarly derived as the amplitude-
modulation counterparts,

FcðzÞ ¼
X∞
m¼1

�
ð−1Þmð2m − 1Þ

×
Z

∞

z

dz0

A1

Re½Ã2m−1ðz0ÞĤ−1
2m−1ðz0Þ�

�
; ð14Þ

ΓðzÞ¼ kAdðzÞ
A1ω0½1þΩðzÞ�

þ
X∞
m¼1

ð−1Þm
A1ω0½1þΩðzÞ�Im½Ã2m−1ðzÞĤ−1

2m−1ðzÞ�: ð15Þ

Let us make several remarks on our theoretical deriva-
tion. First, for a conservative system (ΓðzÞ≡ 0), the higher
harmonic signals are given explicitly as [see Eq. (S6) in
Supplemental Material [39] ],

Ãn ¼ 2Ĥn

X∞
k¼0

A2kþn
1

2ð2kþnÞk!ðkþ nÞ!
d2kþn

dz2kþn FcðzÞ; ð16Þ

where the leading term is proportional to the nth derivative
of Fc and the rest is attenuated exponentially. Thus, the
higher harmonic signals due to interatomic forces that
follow the inverse power laws are more localized close to
the surface atoms, which explains the enhanced resolution
imaging in MHAFM [29]. Second, the reconstruction
formulas for both conservative and dissipative forces
require Ãn’s of odd n. This can be intuitively explained
for the conservative part using the fact that we derive Fc by
integrating the exact value of dFc=dz. In Eq. (16), the odd
(even)-order derivatives of Fc are linear combinations
of the odd (even) harmonics (and vice versa), which
explains why dFc=dz, and consequently its integral Fc,
is a function of odd harmonics. Third, Fc can be efficiently
approximated by using a finite upper bound M in the
summations in Eqs. (10) and (14), withM corresponding to
the order of approximation. Then, the calculations are
reduced to M integrations that each require OðNÞ compu-
tation time, where N is the number of discrete data points.
The resulting computation time of this scheme is OðMNÞ,
dramatically faster than both the SJ method [14] that
requires integrations for each point [OðN2Þ], and the matrix
method [9] that involves inversion of N × N matrices
[OðNkÞ with 2.373 ≤ k ≤ 3 depending on the algorithm
used]. Next, while we assume a single eigenmode of the
cantilever, the analogous reconstruction formulas can also be
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derived assuming multiple eigenmodes where one of its
resonance frequencies is an exact multiple ofωres, enhancing
the corresponding higher harmonic responses [42]. For this,
we only need to replace HðiωÞ, used to define H̃n and Ĥn,
respectively, in Eqs. (10)–(11) and Eqs. (14)–(15), by the
transfer function of the corresponding eigenmode. Lastly,
dissipative forces that cannot be expressed as a velocity-
dependent form shown in Eq. (6), such as defect states in the
tip or sample, are not considered in our theory. Still,
conservative forces can be recovered from the given formulas
even if the dissipation is not explicitly dependent on _z, but is
an odd function with respect to path inversion of the tip
trajectory (e.g., dependent on _z3; _z5;…) [37]. This is because
the integration that is used to derive Eqs. (8) and (12) cancels
out all odd functions, and the reconstruction formulas for
conservative force are directly derived from those equations.
Results.—We verify that our reconstruction formulas are

exact for the entire range of oscillation amplitudes and tip-
sample separations. First, we generate multiharmonic
signals Ãn with respect to the model force for both AM-
AFM and FM-AFM using Eqs. (8)–(9) and Eqs. (12)–(13),
respectively. We use the Lennard-Jones (LJ)–type force for
our analysis, which is defined as

FLJðzÞ ¼ F0

�
l6

3z6
−
l2

z2

�
; ð17Þ

where F0 ¼ 0.9 nN is a constant and l ¼ 0.3 nm is the
characteristic length. The LJ-type force has the inflection
point zinf ¼ 1.24l where the curvature of the force changes
sign, force-minimum point zf min

¼ l, and potential-mini-
mum point zp min

¼ 0.76l. To choose the oscillation ampli-
tude, we invoke the inflection point test of Sader et al. [18],
which gives the amplitude range where single frequency-
based conventional force reconstruction methods are unre-
liable: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−
F0
intðzinfÞ

F000
intðzinfÞ

s
≤ A1 ≤

zinf
2

: ð18Þ

For the LJ-type force, the corresponding amplitude range is
0.22l < A1 < 0.62l, which is comparable to λ of the attrac-
tive force (0.5l). For comprehensive analysis, we use
amplitudes that are small (0.1 l ¼ 0.03 nm), intermediate
(0.33 l ¼ 0.1 nm), and large (0.66 l ¼ 0.2 nm) with respect
to Eq. (18), for the free (fixed) oscillation amplitude in AM-
AFM (FM-AFM) to generate themultiharmonic signals. The
mechanical parameters of the cantilever and the spacing of
the data pointswere set to values typical in ambient (vacuum)
condition tuning fork-based DFM experiments with N ≈
5000 (see Supplemental Material SM2 [39]).
Now, we reconstruct the interaction forces from the

generated AM-AFM and FM-AFM multiharmonic signals,
as shown in Figs. 1 and 2, using an orderM approximation
of the formulas [Eqs. (10) and (14)] with varying M.

Increasing M leads to more accurate reconstruction results
in Figs. 1(a)–1(c) and Figs. 2(a)–2(c) as well as less errors at
zp min, zf min, and zinf in Figs. 1(d)–1(f) and Figs. 2(d)–2(f),
demonstrating the exactness of the reconstruction formulas.
Moreover, since the accuracy of the approximation is
compromised by the magnitude of the higher harmonics
of order > 2M − 1, smaller amplitudes result in more
accurate reconstructions even at smaller M. For example,
the reconstruction errors for AM-AFM at zf min in
Figs. 1(d)–1(f) are given as 0.02%, 0.3%, and 0.02% using
M ¼ 2 (small amplitude), 3 (intermediate amplitude),
and 6 (large amplitude), respectively. For FM-AFM, the
reconstruction errors at zf min in Figs. 2(d)–2(f) are given as
0.03%, 0.8%, and 0.25% using the sameM values for each
amplitude, except for a large amplitude (M ¼ 9). These
results demonstrate superior accuracy over the SJmethod by
an order ofmagnitude for intermediate and large amplitudes,
and by 2 orders of magnitude for smaller amplitudes.
In addition, our approach displays superior computational
efficiency, with at least tenfold decrease in the computation
time compared to the SJ method (see SupplementalMaterial
SM3 [39]).
Let us now discuss the robustness of the reconstruction

formulas. The resolving power ofDFMbetween twodistinct
interatomic force laws is dependent on how precisely the
forces can be recovered. However, in FM-AFM operations,
the precision of force recovery is compromised by
the instability of the oscillation amplitude. Although
ffeedback is used to maintain a constant amplitude, the
nonconservative tip-sample interaction can lead to
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FIG. 1. Analysis of the reconstructed force in AM-AFM for
different free oscillation amplitudes A1. (a)–(c) Reconstructed
force-distance curves using different orders of approximation and
those of the Sader-Jarvis method (black) are presented and
compared to the model force FLJ (orange). (d)–(f) Reconstruction
errors are calculated for each plot at the potential minimum zp min,
force minimum zf min, and inflection point zinf of FLJ. As shown,
increasing the order of approximation reduces the overall error
observed at the specific points.
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variations in the amplitude during the gradual approach of
the cantilever, causing spurious results in force
reconstruction. This is expected to be maximized in single
frequency-based reconstruction procedures when the ampli-
tude is in the intermediate range [Eq. (18)] and when the
force has points not infinitely differentiablewith respect to z
[18], which all lead to greater anharmonic motion of the
cantileverwithin the regimewhere the force changes rapidly.
To verify the robustness with respect to the amplitude
instability, we perform force reconstruction using the set
oscillation amplitudes A1;set having �5% error with respect
to the actual oscillation amplitude A1;actual [18]. As the
model force, we use the Stillinger-Weber (SW) type, which
approximates the forces between two silicon atoms, because
it changes rapidly at z≈350pm. The multiharmonic signals
are generated with A1;actual¼50pm, which lies in the range
of Eq. (18), and the same parameters used for the LJ force.
Then, we recover the forces using A1;set ¼ 50 pm (0%
error), 52.5 pm (þ5% error), 47.5 pm (−5% error), as
shown in Figs. 3(a) and 3(b). Theminimum force from theSJ
method shows a significant error (8.4%, solid line) and the
greatest variance (�5.0%, dotted lines), whereas they are
reduced significantly to 0.2% and �1.0%, respectively, in
the reconstruction using M ¼ 3. We also find accuracy
improvement corresponding to 7.1%of the absolute value of
the Derjaguin-Muller-Toporov (DMT)–type force, indicat-
ing that our method can be used for accurate measurements
of a wide range of forces (see Supplemental Material SM3
[39]). Furthermore, we perform the same reconstruction
procedures using the model force rescaled by different

scaling factors; we use 0.9, 0.95, 0.98, 1, 1.02, 1.05, and
1.1, to observe the resolving power of the formulas.
Quantitative analysis of the force minimum of the
reconstruction results in Figs. 3(c) and 3(d) reveals that
multiharmonic consideration allows us to resolve the
rescaled SW-type forces at ≈2% precision, which is a
fivefold improvement over the SJ method.
Conclusion.—We have developed a universal theory of

DFM based on multiharmonic signal analysis. Our method
enables exact and robust reconstruction of the conservative
and dissipative forces in both amplitude- and frequency-
modulation AFM, regardless of the oscillation amplitudes
and tip-sample distances. Even when approximated
reconstruction formulas are used, higher accuracy over
the SJ method with less computation time can be obtained.
Force reconstruction using the multiharmonic signal analy-
sis has also been demonstrated to be robust with respect to
the oscillation amplitude error, overcoming the intrinsic
reconstruction instability of the conventional methods. Our
theoretical platform provides versatility and efficiency for
accurate and precise force measurements beyond the limits
of conventional DFM.

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (No. 2016R1A3B1908660).
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FIG. 2. Force reconstruction in FM-AFM using different
fixed oscillation amplitudes A1. (a)–(c) Reconstructed force-
distance curves of the model force FLJ (orange) using different
orders of approximation of the reconstruction formulas.
(d)–(f) Reconstruction errors calculated at zp min, zf min, and
zinf . The results of the Sader-Jarvis method (black) are also
shown for comparison. Similar to the results in AM-AFM, the
reconstruction accuracy at such points increases when using
higher orders of approximation, reflecting the exactness of the
reconstruction formulas.
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amplitude error. (a)–(b) Reconstructed forces from the signals
generated using the SW-type force (orange) and fixed oscillation
amplitude A1;actual ¼ 50 pm, assuming no error (0% error, solid
line) and �5% error (dotted line) with respect to A1;actual. Different
scaling factors are used to rescale the SW-type force, where the
force minimum of the reconstruction results are evaluated in terms
of (c) relative force and (d) relative distance with respect to the
original SW type force minimum. The error bars delimit the relative
position of the force minimum assuming �5% amplitude error.
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