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We introduce different types of quenches to probe the nonequilibrium dynamics and multiple collective
modes of bilayer fractional quantum Hall states. We show that applying an electric field in one layer
induces oscillations of a spin-1 degree of freedom, whose frequency matches the long-wavelength limit of
the dipole mode. On the other hand, oscillations of the long-wavelength limit of the quadrupole mode, i.e.,
the spin-2 graviton, as well as the combination of two spin-1 states, can be activated by a sudden change of
band mass anisotropy. We construct an effective field theory to describe the quench dynamics of these
collective modes. In particular, we derive the dynamics for both the spin-2 and the spin-1 states and
demonstrate their excellent agreement with numerics.
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Introduction.—A paradigmatic property of condensed
phases of matter is the existence of a collective mode—
coherent oscillations of the medium—which governs the
system’s low-energy physics [1]. The Feynman-Bijl ansatz
[2] or “single-mode approximation” (SMA) is an elegant
formulation of this idea, originally applied to understand
the emergent phonon and roton excitations in liquid helium.
The same idea has found applications in correlated systems,
such as the plasmon modes in three-dimensional (3D) ele-
ctron systems [3,4] and 1D quantum spin systems [5–11].
Recent progress in tensor networks has enabled accurate
descriptions of collective modes in both 1D and 2D lattice
systems [12,13].
Collective excitations are also ubiquitous in strongly

correlated topological phases in two-dimensional electron
gases (2DEGs), which are experimentally observed in the
regime of the fractional quantum Hall (FQH) effect [14].
While there has been much focus on understanding the
properties of charged excitations of FQH phases, fueled by
their exotic properties such as fractional charge and frac-
tional statistics [15–17], recently there has been a resur-
gence of interest in the neutral collective modes of FQH
systems, some of which are also accurately described using
the SMA [18–22]. In comparison with 1D or topologically
trivial systems, the FQH collective modes are endowed
with additional physical properties, which makes their
physics much richer. For example, it has recently been
realized that the long-wavelength limit of the SMA
excitation, called the Girvin-MacDonald-Platzman (GMP)
mode [18,19] exhibits an emergent quantum geometry
[23–25]. This geometric degree of freedom has been
dubbed FQH “graviton” since it carries angular momentum

L ¼ 2, reminiscent of the spin-2 elementary particle
[21,24,26,27]. The conventional probes of FQH collective
modes by inelastic light scattering [28–31] are limited to
finite momenta k, thus they can only indirectly measure the
graviton which emerges in k → 0 limit. In contrast, recent
works in single-layer FQH systems [32,33] have shown
that the graviton can be directly excited in a dynamical
quench experiment, where the band mass tensor of the
2DEG is suddenly made anisotropic or the magnetic field is
abruptly tilted (see also a recent proposal using surface
acoustic waves [34]).
Despite this progress in understanding the dynamics of

the collective mode in single-layer FQH systems, many
interesting new questions arise in multicomponent FQH
systems [35], such as FQH bilayers. The additional layer
degree of freedom gives rise to multiple collective excita-
tions [20,36–38], thereby presenting a new avenue to study
the nonequilibrium dynamics of FQH systems. In this
Letter, we show that FQH bilayers provide a versatile
platform to probe the dynamics of individual or coupled
collective modes with rich topological and geometric
properties. We report the investigation of an FQH bilayer
system of bosons at total filling ν ¼ 2=3, which hosts two
collective modes: a spin-2 excitation (graviton or quadru-
pole) and a spin-1 (dipole) excitation. We design two types
of quench protocols corresponding to the change of mass
tensor and the application of an electric field, which are
shown to excite either the individual modes or their
combination. We support these findings using extensive
exact diagonalization calculations of the real-time evolu-
tion of the FQH bilayer system and formulating a field-
theoretic description of the quench.
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Model.—We consider a bilayer FQH system at total
filling ν ¼ 2=3 on the square torus with N bosons and
Nϕ ¼ N=ν magnetic flux quanta. We label the two layers
by σ ¼ ↑;↓, and neglect interlayer tunneling. Hence, the
number of bosons in each layer Nσ is conserved and we
focus on the density-balanced case with pseudospin
Sz ≡ 1

2
ðN↑ − N↓Þ ¼ 0. We assume that the bosons reside

in the lowest Landau level (LLL), and their interaction is
described by the Hamiltonian

H ¼
X

q

X

σ;σ0¼↑;↓

V̄σ;σ0
q ∶ ρσqρ

σ0
−q∶ : ð1Þ

Here, ρσq ¼ P
Nσ

j¼1 e
iq·Rσ

j is the LLL-projected density oper-
ator in layer σ, with Rσ

j the jth particle’s guiding center

coordinate [39], V̄σ;σ0
q is the Fourier transform of the

interaction, and : : denotes normal ordering.
The Fourier transform of the interaction is a product of

the Coulomb potential and the LLL form factors,
V̄σ;σ0
q ¼ Vσ;σ0

q Fσ
qFσ0

q . The intralayer potentials are V↑↑
q ¼

V↓↓
q ¼ 2π=jqj, and the interlayer interaction is V↑↓

q ¼
ðV↓↑

q Þ� ¼ ð2π=jqjÞe−jqjdeiq·s, where d is the interlayer
distance, and s ¼ ðsx; syÞ is the interlayer displacement
between bosons in different layers. Throughout this work
we quote energies in units of e2=ðεlBÞ, where the magnetic
length lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=ðeBÞp
and ε is the dielectric constant of

the host material. The quantity d=lB can be varied by
changing the magnetic field, while s can be tuned by
applying an electric field in one layer. The form factor
Fσ
q ¼ exp½−ðgσmÞabqaqbl2

B=4� depends on the band mass
tensor in each layer gσm [23] (we use Einstein’s summation
convention). The 2 × 2 unimodular matrix gσm measures the
mass anisotropy in layer σ which is induced, e.g., by tilting
the magnetic field. In the isotropic case we have gσm ¼ 1,
where 1 is the 2 × 2 identity matrix.
For small interlayer distances, d≲ lB, the ground state

of the bosonic ν ¼ 2=3 FQH bilayer is described by the
Halperin (221) state [40], an incompressible fluid with total
momentum k ¼ 0. At large values of d, the system
transitions to two decoupled ν ¼ 1=3 states, each being
a bosonic analog of the composite fermion Fermi liquid
[41,42]. We are interested in probing the nonequilibrium
behavior of the (221) system using a global quench of the
system’s Hamiltonian Hðgσm; sÞ defined in Eq. (1). In our
calculations we fix d ¼ 0.4lB. Initially the system is in the
ground state jΨ0i of H0 ≡Hðg↑;↓m ¼ 1; s ¼ 0Þ in the (221)
phase. At time t ¼ 0, we suddenly modify the Hamiltonian
H0 → H0, and let the system evolve according to the
Schrödinger equation jΨðtÞi ¼ e−iH

0tjΨ0i.
The sudden change of the Hamiltonian defines the

quench, and we consider two protocols: (i) applying
electric field in a single layer [Fig. 1(a)], which is
equivalent to changing s from 0 to s0 ≠ 0; and/or

(ii) changing the mass tensor gσm from 1 to gσm0 ≠ 1 to
add anisotropy in both layers [Fig. 1(b)], where gσm0 is taken
to be diagonal for simplicity. We find that the essential
features of postquench dynamics are independent of precise
values of s0 and gσm0 as long as the ground state of H0 ≡
Hðgσm ¼ gσm0; s ¼ s0Þ remains in the (221) phase, which we
assume below.
The key to understanding the dynamics lies in the excited

states of Hðgσm; sÞ. A typical energy spectrum of the (221)
system on the torus is shown in Fig. 1(c). The ground state
is in the k ¼ 0 momentum sector, and there are two
excitation modes above it. On the sphere, the upper mode
starts from the total angular momentum L ¼ 2 and hence is
termed a quadrupole mode [18,19], while the lower mode
starts from L ¼ 1 and forms a dipole excitation. We note
that the dispersion of these two modes is not sensitive to the
precise values of gσm and s. In the language of field theory,
the two modes are described using a degree of freedom that
carries spin-2 and spin-1, respectively, in the long-wave-
length limit. In the context of SMA, the long-wavelength
limits of the quadrupole and dipole modes can be obtained
by acting on the ground state with ρSq ¼ ðρ↑q þ ρ↓qÞ=

ffiffiffi
2

p
and

ρASq ¼ ðρ↑q − ρ↓qÞ=
ffiffiffi
2

p
, respectively [20,36,38]. As our

quench protocols preserve translation symmetry, only
eigenstates with k ¼ 0 are involved in the dynamics.
Electric-field quench.—Let us first consider the quench

in which we apply an electric field instantaneously in one
layer while keeping gσm in both layers isotropic. For
simplicity, we consider an electric field in the x direction,
whose effect can be captured by changing the interlayer
displacement s from (0,0) to ðs; 0Þ, with s ≠ 0 (the electric
field also lifts the degeneracy of the LLL orbitals, but this
effect is negligible for the system sizes we study). We
compute the post-quench fidelity FðtÞ ¼ jhΨ0jΨðtÞij to

0

0.05

0.1

0.15

0.2

0.25

0.3(a)

(b)

(c)

0 0.5 1 1.5 2

FIG. 1. (a) Instantaneous application of an electric field E in one
layer induces dynamics in the relative displacement between
FQH droplets in the two layers. (b) Instantaneous change of the
mass tensors in both layers (or, equivalently, a sudden tilt of the
magnetic field B) induces dynamics in the intrinsic anisotropy
[32], which describes the shape of flux-particle composites of the
underlying FQH state. (c) Coulomb spectra of N ¼ 6, 8, 10
bosons on the torus for d ¼ 0.4lB showing the quadrupole and
dipole collective modes. Dashed lines trace out these collective
modes as a guide to the eye.
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monitor the dynamics. We find that FðtÞ oscillates regularly
with a single dominant frequency, as shown in Fig. 2(a) for
s ¼ 0.1lB, and this frequency is almost the same for
different system sizes and other small s. To extract this
frequency, we plot the discrete Fourier transform jF ðωÞj of
FðtÞ in Fig. 2(b). We see that jF ðωÞj has a sharply
pronounced peak at ω ≈ 0.12 which is in excellent agree-
ment with the energy of the spin-1 dipole mode in the long-
wavelength limit [see Fig. 1(c)].
As shown in Fig. 1(c), the entire dipole mode lies below

the continuum of the energy spectrum. This allows us to
readily identify the coherent oscillations under the applied
electric field with the dipole mode. This will not be the case
with other types of quenches considered below. To unam-
biguously identify the modes excited by a quench, we
construct appropriate spectral functions and locate their
peaks. In the dipole case, we use the spectral function of an
operator carrying spin-1 evaluated in the k ¼ 0 sector. A
natural choice for such an operator is the V0;1 generalized
pseudopotential [72], adapted to the bilayer case, i.e.,
V̂0;1 ¼

P
q V̄0;1ðqÞ: ðρ↑qρ↓−q − ρ↓qρ

↑
−qÞ: with V0;1ðqÞ ∝ iqx.

The corresponding spectral function I0;1ðEÞ is

I0;1ðEÞ ¼
X

j

δðE − ϵj þ ϵ0ÞjhjjV̂0;1j0ij2; ð2Þ

where ϵp is the energy of the eigenstate jpi of the general
Hamiltonian Hðgσm; sÞ defined in Eq. (1). Note that the
bilayer V̂0;1 is defined to be antisymmetric with respect to

the layer index because all layer-symmetric terms vanish
for V0;1ðqÞ. As V̂0;1 couples the ground state with excited
states with Lz ¼ 1 (spin-1), the peaks in I0;1ðEÞ correspond
to spin-1 eigenstates. We show I0;1ðEÞ in the inset of
Fig. 2(b) for isotropic systems with s ¼ 0 (very similar data
are obtained for weakly anisotropic systems with small s).
Indeed, I0;1ðEÞ has a sharp peak at E ≈ 0.12, agreeing with
the lowest-excited state in the k ¼ 0 sector. This further
confirms that the long-wavelength limit of the spin-1 dipole
mode governs the electric-field-driven quench dynamics.
Mass anisotropy quench.—We now turn to the quench

driven by mass anisotropy. In this case, we drive the quench
by keeping s ¼ 0 and changing the mass tensors gσm in both
layers from 1 to diagfα; 1=αg with α > 1 at t ¼ 0. In
single-layer FQH systems, the quench dynamics driven by
mass anisotropy is dominated by a single spin-2 degree of
freedom, which was identified with the long-wavelength
limit of the GMP mode [32]. Since bilayer FQH systems
have multiple neutral excitations, we expect the dynamics
of bilayer mass-anisotropy quench to be richer than the
single-layer case.
Like in the electric-field quench, we first study the fidelity

FðtÞ, shown in Fig. 3(a) for α ¼ 1.3. It is clear thatFðtÞ now
oscillates withmultiple frequencies. To extract the dominant
frequencies we plot the discrete Fourier transform jF ðωÞj of
FðtÞ in Fig. 3(b). Indeed we observe several pronounced
peaks that are insensitive to small variations in α. As
changing the mass tensor leads to quadrupolar (spin-2)
deformations of FQH droplets [32,72], we expect these
dominant frequencies to correspond to spin-2 degrees of
freedom in the k ¼ 0 sector of H0. To substantiate this
quantitatively, we utilize the spectral function of a spin-2
operator in the k ¼ 0 sector. We choose the operator
V̂0;2 ¼

P
q V̄0;2ðqÞ: ρSqρS−q: with V0;2ðqÞ ∝ q2x − q2y, which

is the bilayer generalization of the V0;2 generalized pseu-
dopotential [72]. Its spectral function I0;2ðEÞ is defined
analogously to Eq. (2). As shown in Fig. 3(c), the positions
of peaks in I0;2 indeed match those in jF ðωÞj. Thus all
dominant frequencies in the postquench dynamics corre-
spond to spin-2 eigenstates in the k ¼ 0 sector of H0.
What is the physical interpretation of the multiple spin-2

states observed in the dynamics? On the one hand, the long-
wavelength limit of the quadrupole mode, i.e., the bilayer
spin-2 graviton, should definitely contribute. As suggested
by the exact energy spectrum in Fig. 1(c), the quadrupole
mode approaches the energy E ≈ 0.25–0.3 in the long-
wavelength limit, and there are indeed corresponding sharp
peaks in jF ðωÞj [cyan-shaded area in Fig. 3(b)]. The
splitting of these peaks is due to “fragmentation” of the
spin-2 graviton mode into several states in finite systems, a
feature which is also observed in single-layer systems [32].
On the other hand, although the long-wavelength limit of
the spin-1 dipole mode cannot couple to the quench, a
suitable combination of two spin-1 states can be excited by
it. Two spin-1 states can form a bound state with spin-2,

(a)

(b)

FIG. 2. (a) The fidelity FðtÞ and (b) its discrete Fourier
transform jF ðωÞj for the quench driven by tuning the interlayer
displacement s from (0,0) to ðs; 0Þ with s ¼ 0.1lB. The inset
of (b) shows the normalized spectral function Ī0;1ðEÞ ¼
I0;1ðEÞ=

R
I0;1ðEÞdE for isotropic systems with zero interlayer

displacement. Markers in the main figure and curves in the inset
with the same color refer to the same system size.
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whose energy is slightly reduced from twice the spin-1
energy. The spectrum shown in Fig. 1(c) and results of the
electric-field quench suggest that the dipole mode goes to
E ≈ 0.12 in the long-wavelength limit, thus a bound state of
two dipoles, with energy E < 0.24, could appear in the
postquench dynamics. Remarkably, we indeed observe a
sharp peak at that energy in jF ðωÞj [orange-shaded area in
Fig. 3(b)].
Curiously, in addition to the bilayer spin-2 graviton and

the bound state of two spin-1’s, we also see peaks in jF ðωÞj
at a much higher frequency ω ≈ 0.45–0.5 [purple shaded
area in Fig. 3(b)]. In principle, higher multiples of the
elementary spin-1 and spin-2 modes may be expected to
appear in the dynamics, but their contribution to the
spectral function is expected to be significantly reduced.
Moreover, we find these higher-frequency peaks become
sharper and move to higher frequencies with increasing d
when the two layers are progressively more decoupled [42].
Hence, we identify this spin-2 excitation with that of a
single-layer ν ¼ 1=3 bosonic system.
Effective field theory.—Similar to the single-layer case,

the bilayer spin-2 graviton can be described by the bimetric
theory [24]. Here we outline the effective theory describing
the new collective spin-1 mode. The theory is a spin-1
counterpart of the bimetric theory with a vector degree of
freedom v ¼ ðvx; vyÞ that quantifies relative displacement
of layers, described by the Lagrangian

L¼ −εijvi _vj −Mjvj2 þ E−
i vi; ð3Þ

where E−
i is the difference between electric fields applied to

the layers and M determines the gap of the spin-1 mode.
The quench is simulated by suddenly switching on E−

i at
t ¼ 0 and solving classical equations of motion [32,73].
Assuming that the quench is along the x direction, i.e.,
E−
y ¼ 0, the equations of motion stemming from Eq. (3) are

single harmonics

vxðtÞ ¼ A½1 − cosðMtÞ�; vyðtÞ ¼ A sinðMtÞ; ð4Þ

where the amplitude of oscillations is determined by the
quench strength, A ¼ E−

x =ð2MÞ.
Dynamics of vi coming from Eq. (4) can then be

compared to a numerical simulation, where viðtÞ is deter-
mined by a brute force search over a large set of
precomputed trial (221) states jΨtrialðsÞi, i.e., the ground
state of the Hamiltonian Hðg↑;↓m ¼ 1; sÞ. When the overlap
jhΨðtÞjΨtrialðsÞij is maximized (and sufficiently close to
unity), we expect viðtÞ ¼ si. In Fig. 4, we show dynamics
of vi for various weak electric-field quench strengths and
compare it to Eq. (4). Fitting the first oscillation in Fig. 4
against Eq. (4), we find a remarkable agreement between
numerically exact dynamics and field-theory predictions up
to moderate times. The frequency M returned by the fit
matches the energy ≈0.12 of the k ¼ 0 spin-1 state, and the
oscillation amplitude is given by A ¼ 2s. With increasing
quench strength or at longer times, we observe deviations
from simple harmonic oscillations, which we believe is
caused by effects like fragmentation of the long-wave-
length limit of the dipole mode and the interaction between
spin-1 states.
To describe the spin-2 bound state of the spin-1 modes

we must include the interaction term, Lint ∝ jvj4, into
Eq. (3). It is then straightforward to show that hvivji

(a) (b) (c)

FIG. 3. (a) The fidelity FðtÞ for the quench driven by tuning the mass tensors in both layers from 1 to diagfα; 1=αg with α ¼ 1.3 for
d ¼ 0.4lB. (b) The discrete Fourier transform jF ðωÞj of FðtÞ. The three types of dominant frequencies, i.e., the combination of two
spin-1 modes (orange), the bilayer spin-2 graviton (cyan), and the spin-2 state in a single layer (purple), are indicated by shaded areas
and arrows. (c) The normalized spectral function Ī0;2ðEÞ ¼ I0;2ðEÞ=

R
I0;2ðEÞdE for isotropic systems with zero interlayer displacement

(very similar data are obtained for weakly anisotropic systems with small s).

FIG. 4. Exact dynamics of the relative displacement v in the x
(dots) and y directions (circles) for N ¼ 10 bosons after quenches
driven by tuning the interlayer displacement s from (0,0) to ðs; 0Þ
with s ¼ 0.1lB, 0.15lB, 0.2lB. The dashed curves are fits to
Eq. (4).
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behaves as a spin-2 mode and responds to the geometric
quench, leading to an extra peak in Fig. 3(b) [42].
Discussion.—In this work, we explored the quench

dynamics of collective modes in bilayer ν ¼ 2=3 systems
of bosons. We proposed and numerically simulated two
quench protocols which excite neutral degrees of freedom
in the system. The quench driven by an electric field
applied in one layer induces oscillations of the long-
wavelength limit of the spin-1 dipole collective mode.
More interestingly, the quench driven by mass anisotropy
not only activates the spin-2 quadrupole mode but also
single-layer spin-2 excitation and a combination of two
spin-1 dipole modes. While in this Letter we presented
results for systems of bosons, all of our conclusions also
hold for FQH systems of fermions.
Direct access to the spin-1 mode in the spectrum of

bilayer states suggests a variety of new problems related to
the geometric aspects of FQH and exact calculations of
correlation functions [23,74–80]. Namely, which correla-
tions functions are sensitive to the mode, and can any of
them be computed with the help of existing methods?
Our quench protocols provide an opportunity to exper-

imentally measure the collective modes of FQH states at
long wavelengths in a way that complements the inelastic
light scattering [28–31] and current noise measurements
[81]. In fact, the quench protocols proposed in this work,
in particular the counterflow electric field, can be imple-
mented with the existing technology. The main challenge
would be measuring the dynamics on short timescales in
solid-state materials, which could be naturally resolved in
other platforms, e.g., cold atoms in optical lattices
forming a fractional Chern insulator [82–84]. Our results
are also of direct relevance to more complex FQH
systems with non-Abelian topological order, which also
host multiple types of neutral excitations [85,86]. It would
be interesting to design quench protocols and effective
theories to probe different collective modes at long
wavelengths as well as the combination (or interaction)
between them.
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