
 

Quasiparticle and Nonquasiparticle Transport in Doped Quantum Paraelectrics

Abhishek Kumar ,1 Vladimir I. Yudson,2,3 and Dmitrii L. Maslov1
1University of Florida, Gainesville, Florida 32611, USA

2Laboratory for Condensed Matter Physics, National Research University “Higher School of Economics”
20 Myasnitskaya Street, Moscow 101000, Russia

3Russian Quantum Center, Skolkovo, Moscow 143025, Russia

(Received 29 July 2020; revised 16 November 2020; accepted 14 January 2021; published 18 February 2021)

Charge transport in doped quantum paraelectrics (QPs) presents a number of puzzles, including a
pronounced T2 regime in the resistivity. We analyze charge transport in a QP within a model of electrons
coupled to a soft transverse optical (TO) mode via a two-phonon mechanism. For T above the soft-mode
frequency but below some characteristic scale (E0), the resistivity scales with the occupation number of
phonons squared, i.e., as T2. The T2 scattering rate does not depend on the carrier number density and is not
affected by a crossover between degenerate and nondegenerate regimes, in agreement with the experiment.
Temperatures higher than E0 correspond to a nonquasiparticle regime, which we analyze by mapping the
Dyson equation onto a problem of supersymmetric quantum mechanics. The combination of scattering by
two TO phonons and by a longitudinal optical mode explains the data quite well.
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Quantum paraelectrics (QPs) are materials close to a
ferroelectric transition but never quite making it because
of zero-point motion which disrupts symmetry breaking
[1–4]. This group includes several perovskites, e.g., SrTiO3

(STO), KTaO3 (KTO), and EuTiO3 (ETO), and a number
of rock salts, e.g., PbTe. Electron transport in doped QPs is
very much different from that in doped semiconductors. To
begin with, a very large static dielectric constant (∼25 000
in STO) translates into a micron-long Bohr radius.
Consequently, conduction in QPs sets in at very low
doping, e.g., at few times 1015 cm−3 carriers in STO [5],
and is prominently metallic above 1017 cm−3. In the
metallic regime, the resistivity increases by several orders
of magnitude from the liquid helium to room temperatures,
exceeding the Mott-Ioffe-Regel (MIR) limit around 100 K
[6]. A very intriguing observation is a prominent T2 scaling
of the resistivity observed in STO [7–9], KTO [10], and
ETO [11]. Normally, a T2 resistivity is associated with the
Fermi-liquid (FL) behavior. However, a T2 resistivity in
QPs is observed already at very low doping, when umklapp
scattering is forbidden and only the lowest conduction band
is occupied [7], and straddles a number of relevant energy
scales, such as the plasma frequency and the Fermi energy
(EF). In addition, the T2 scattering rate depends only
weakly on the electron number density n [7,8]. All of
the above contradicts the interpretation of the T2 behavior
in terms of the FL theory [3,8,12,13].
In this Letter, we discuss the model of electrons

interacting with a soft transverse optical (TO) mode, which
is a defining feature of QPs. As temperature is lowered,
the frequency of the TO mode decreases, indicating the
tendency to a ferroelectric transition, but eventually

saturates at a small but finite value (as low as ω0 ≈ 1 meV
for the Eu mode in STO [14–16]). For electrons near the
Brillouin zone center, single-TO phonon scattering is
suppressed in a single-band system and in the absence
of spin-orbit interaction [17–22], and the lowest-order
process involves two TO (2TO) phonons [23–25].
We show that the model is characterized by a material-

dependent energy scale E0, separating the regimes of
quasiparticle and nonquasiparticle transport, at lower and
higher T, respectively. (In STO, E0 is on the order of
100 K.) For ω0 ≪ T ≪ E0, the TO mode is in the classical
regime, and a T2 term in the resistivity arises simply from
the square of the phonon occupation number. A unique
feature of the 2TO mechanism is that the quasiparticle
scattering rate, 1=τ ∼ T2=E0, does not depend on the
electron energy. This explains why the observed T2

scattering rate depends on n only weakly for T ≪ EF
and does not exhibit a crossover at T ∼ EF.
For T ≫ E0, the quasiparticles are not well defined.

By mapping the Dyson equation for the self-energy
onto an exactly soluble problem of supersymmetric
quantum mechanics, we show that transport in this
regime is dominated by severely off-shell electrons. In this
regime, the resistivity scales as T3=2 and violates the
MIR limit.
Finally, we show that a more realistic model, which

incorporates the T dependence of the TO soft mode and
also includes scattering by longitudinal optical (LO)
phonons, explains the experimental data, if the freeze-out
of TO phonons for T < ω0 is ignored. We discuss the
advantages and shortcomings of the 2TO model and
propose a number of experiments that can falsify it.
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We consider 3D electrons coupled to an O(3) electric
polarization PðrÞ, produced by TO phonons. Because
∇ · P ¼ 0, single-phonon coupling is forbidden and the
Hamiltonian starts with a two-phonon term [24–26]

H2TO ¼ g2
2

Z
d3rP2ðrÞψ†ðrÞψðrÞ; ð1Þ

where g2 is the coupling constant (with units of the
volume). Other than allowing for TO modes, we treat
the material as isotropic. For a TO mode with dispersion
ω2
q ¼ ω2

0 þ s2q2 and polarization eaq,

PðrÞ ¼
X
q;a

eaqffiffiffiffi
V

p Aqbqeiq·r þ H:c:; ð2Þ

where A2
q ¼ ½ε0ðqÞ − ε∞�ωq=4π [34]. The sum over a ¼ 1,

2 accounts for two (degenerate) branches of the TO mode,
ε0ðqÞ and ε∞ are the static and high-frequency limits of the
dielectric function, respectively, and bq is the bosonic
annihilation operator. The diagrams for the electron
self-energy are shown in Fig. 1, where the solid and wavy
lines denote the (Matsubara) electron and phonon
Green’s functions, Gðk; ϵmÞ and Dðq;ωmÞ, respectively,
and solid dots denote the electron-2TO-phonon vertex
ΓαβðqÞ ¼ g2A2

qðδαβ − qαqβ=q2Þ. Phonons will be treated
as bare ones; hence Dðq;ωmÞ ¼ −2ωq=ðω2

m þ ω2
qÞ.

We now focus on the classical regime, when phonons
can be treated as static “thermal disorder” [35], which
corresponds to setting ωm ¼ 0 in the phonon lines. After
analytic continuation iϵm → ϵþ i0þ, Fig. 1(a) yields

Σðk; ϵÞ ¼
Z
q
Gðkþ q; ϵÞUðqÞ; ð3Þ

where the correlation function of thermal disorder is

UðqÞ ¼ 2T2

Z
d3q1
ð2πÞ3

X
αβ

Γαβðq1Þ
ωq1

Γβαðq − q1Þ
ωq−q1

: ð4Þ

Other diagrams can be treated in a similar manner.
We also assume for now that the material is very close to

the quantum-critical point, so that the gap in the phonon
dispersion can be neglected, i.e., ωq ¼ sq. Neglecting also
ϵ∞ compared to ε0ðqÞ and excluding ε0ðqÞ via the Lyddan-
Sachs-Teller (LST) relation ε0ðqÞ ¼ Ω2

0=ω
2
q and integrating

over q1, we obtain

UðqÞ ¼ 3π

2m�q
T2

E0

with E0 ≡ 64π3s4

m�g22Ω4
0

; ð5Þ

where E0 is characteristic energy scale of the model. The
1=q scaling of UðqÞ (or 1=r2 scaling is real space) will be
crucial in what follows.
For T ≪ E0, thermal disorder is weak. This is the

quasiparticle regime, when Fig. 1(a) with G replaced by
its free-electron form,G0ðk; ϵÞ ¼ ðϵ − ξk þ μþ i0Þ−1 with
ξk ¼ k2=2m�, gives the leading-order result. Accounting
also for a transport correction, we obtain the standard result
for the transport scattering rate

1

τ
¼ 2π

Z
d3q
ð2πÞ3 δðξkþq − ξkÞUðqÞð1 − cos θÞ; ð6Þ

where θ is the angle between k and kþ q. (The difference
between the quantum and transport rates is insignificant
because our thermal disorder is relatively short ranged; as a
result, the two rates differ only by a factor of 2=3).
In general, τ depends on the electron energy ξk via the

electron density of states. This is the reason why, for
example, the resistivity of a semiconductor due to acoustic
phonon scattering scales as T for T ≪ EF and as T3=2 for
T ≫ EF. Our case of UðqÞ ∝ 1=q is, however, special: the
1=q factor cancels out with the density of states, and the
result does not depend on ξk. Evaluating also Figs. 1(b)
and 1(c), we obtain

1

τ
¼ T2

E0

− 1.24
T3

ffiffiffiffiffiffi
m�p

kE3=2
0

þO
�
T5m�3=2

k3E5=2
0

�
: ð7Þ

The leading term in Eq. (7) is the most relevant one for
the experiment: because it does not depend on ξk, its
thermal average does not depend on the statistics of charge
carriers, and the corresponding resistivity

FIG. 1. Diagrams for the electron self-energy due to scattering
by TO phonons. (a) Two-loop two-phonon diagram. (b),(c)
Three- and four-loop “umbrella” diagrams without crossings.
(d),(e) Examples of diagrams with crossings. (f) Four-phonon
diagram resulting from adding a P4 term to Eq. (1).
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ρ ¼ m�

ne2
T2

E0

ð8Þ

scales as T2 regardless of whether T is lower or higher than
EF. From the data [36], we extract E0 ¼ 209 K in STO at
n ¼ 4 × 1017 cm−3. Using the known parameters
of the phonon spectrum [37] (s ¼ 6.6 × 105 cm=s and
Ω0 ¼ 194.4 meV) and m� ¼ 1.8m0 [38], we find that
E0 ¼ 209 K corresponds to g2 ¼ 0.60a30, where a0 ¼
3.9 Å is the STO lattice constant. This is close to an
earlier estimate [24,25] of g2 ¼ 1.0a30.
Strong thermal disorder (T ≫ E0) corresponds to a

nonquasiparticle regime. Since EF ≪ E0 for the relevant
range of electron number densities, we will consider the
nondegenerate case only. According to Eq. (7), 1=τ
becomes comparable to the electron energy (T) at
T ∼ E0. If TO scattering is treated as purely elastic, the
condition Tτ ∼ 1 should indicate the onset of Anderson
localization. However, small but finite energy transfers give
rise to dephasing, which turns out to be strong enough to
prevent localization. Indeed, in a typical scattering event,
electron energy is changed by δϵ ∼ kTs, where kT ∼

ffiffiffiffiffiffiffiffiffi
m�T

p
is the thermal electron momentum. This corresponds to
diffusion along the energy axis with a diffusion coefficient
Dϵ ∼ ðδϵÞ2=τ ∼m�s2T3=E0. The phase-breaking time τϕ
can be estimated from the condition that the phase
accumulated during τφ is on the order unity [39], i.e.,Δϕ ¼
Δϵτϕ ¼ ðDϵτϕÞ1=2τϕ ∼ 1 or τϕ ∼ ðE0=m�s2Þ1=3=T. We see
that τϕ becomes comparable to the elastic time τ ∼ E0=T2 at
T ∼ Tϕ ¼ ðm�s2=E0Þ1=3E0 ≪ E0, i.e., already in the quasi-
particle regime, and it is reasonable to assume that
localization can be neglected for all T > Tϕ.
We now find the self-energy self-consistently from

Dyson equation (3). Relabeling q ¼ k − k0 and integrating
over the angle between k and k0, we obtain

Σðξ; ϵÞ ¼ λ

Z
∞

0

dξ0Kðξ; ξ0Þ 1

ϵ̃ − ξ − Σðξ0; ϵÞ ; ð9Þ

where ϵ̃ ¼ ϵþ μ, λ ¼ 3T2=4πE0, ξ≡ ξk, ξ0 ≡ ξk0 ,
and Kðξ; ξ0Þ ¼ ffiffiffiffiffiffiffiffi

ξ0=ξ
p

Θðξ − ξ0Þ þ Θðξ0 − ξÞ. At weak
coupling (T ≪ E0), when Green’s function can
be replaced by its free-electron form, ImΣðξ; ϵÞ ¼
−πλΘðϵ̃Þ½Θðξ − ϵ̃Þ ffiffiffiffiffiffiffi

ϵ̃=ξ
p þ Θðϵ̃ − ξÞ� is nonzero only

above the bottom of the band [40]. We will now show
that at strong coupling (T ≫ E0) the threshold in ImΣðξ; ϵÞ
moves from ϵ̃ ¼ 0 to a finite value that depends on the
coupling constant. This is an essentially nonperturbative
effect that defines transport in the nonquasiparticle regime.
If a threshold does exist, ImΣðξ; ϵÞ must be small right

above the threshold. Therefore, Eq. (9) can be expanded in
γϵðξÞ≡ −ImΣðξ; ϵÞ. On the other hand, ReΣðξ; ϵÞ is
expected to be regular near the threshold and to depend
on ξ only weakly, so it can be absorbed into the chemical

potential. (Using Kramers-Kronig relation, one can show
that ReΣ depends on ξ and ϵ only logarithmically [26].)
Assuming that relevant ϵ̃ < 0, we expand the imaginary
part of Eq. (9) in γϵðξÞ as

γϵðξÞ ¼ λ

Z
∞

0

dξ0Kðξ0=ξÞ
�

γϵðξ0Þ
ðϵ̃ − ξ0Þ2 −

γ3ϵðξ0Þ
ðϵ̃ − ξ0Þ4

�
: ð10Þ

At first, we drop the cubic term. The linearized integral
equation can be transformed into a “zero-energy
Schrödinger equation” for φϵðξÞ≡ ξ3=4γϵðξÞ [26]

½−∂2
ξþVðξÞ�φϵðξÞ¼0; VðξÞ¼−

�
3

16ξ2
þ λ

2ξðϵ̃−ξÞ2
�
:

ð11Þ

The threshold is defined as the smallest value of ϵ̃ at
which the zero-energy Schrödinger equation has a non-
trivial solution, which is guaranteed to be the case if the
Hamiltonian Hφ ¼ −∂2

ξ þ VðξÞ is supersymmetric
(SUSY) [41]. This means that Hφ can be written as
Hφ ¼ Q†Q, where Q ¼ ∂ξ þWðξÞ, Q† ¼ −∂ξ þWðξÞ,
and WðξÞ is a superpotential satisfying the Riccati
equation W2ðξÞ −W0ðξÞ ¼ VðξÞ. It can be verified [26]
that the Riccati equation is solved by WðξÞ ¼ −3=4ξþ
1=2ðξ − ϵ̃Þ if ϵ̃=λ ¼ −2=3, which is the condition
for Hφ to be of the SUSY type. This implies that the
threshold in the self-energy is located at ϵ̃ ¼ −2λ=3≡ −ϵ0,
while the first-order equation Qφϵ ¼ 0 yields γϵðξÞ ¼
ξ−3=4φϵðξÞ ¼ Cðϵ̃Þ= ffiffiffiffiffiffiffiffiffiffiffiffi

ξþ ϵ0
p

. The function Cðϵ̃Þ is found
by substituting the last equation in Eq. (10) and retaining
the cubic term. The final result for ImΣ near the threshold
reads

ImΣðξ; ϵÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ0 þ ϵ̃Þϵ0

p
Sðξ=ϵ0Þ; ð12Þ

where

SðxÞ ¼
�

42ðxþ 1Þð2xþ 3Þ
16x3 þ 56x2 þ 70xþ 35

�
1=2

: ð13Þ

Note that what is relevant for the observables is the
threshold in ϵ̃ rather than in ϵ itself. Nevertheless, we need
to determine μ, as it is not guaranteed that at strong
coupling electrons are still in the nondegenerate regime.
Imposing the constraint of fixed number density, we find
μ ¼ −ϵ0 − ð3T=2Þ lnðT=EFÞ [26]. Because μ < 0 and
jμj ≫ T, we are indeed in the nondegenerate regime.
To find the resistivity in the nonquasiparticle regime, we

ignore the vertex corrections of both ladder and Cooperon
types for reasons given above. Then,
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ρ ¼ 3m�T
2e2n

R
∞
−∞ dϵ̃e−ϵ̃=T

R
∞
0 dξNðξÞð−ÞImGðξ; ϵÞR∞

−∞ dϵ̃e−ϵ̃=T
R∞
0 dξNðξÞξ½ImGðξ; ϵÞ�2 ; ð14Þ

where NðξÞ ¼ m�3=2 ffiffiffiffiffi
2ξ

p
=π2 is the density of states. The

numerator in Eq. (14) comes from the relation between the
chemical potential and number density. The lower limit in
the ϵ̃ integrals is −ϵ0, and the Boltzmann factor e−ϵ̃=T is
exponentially large near −ϵ0. Therefore, the ϵ̃ integrals
come from the near-threshold region, where the self-energy
is given by Eqs. (12) and (13). Substituting these forms into
Eq. (14), we obtain

ρ ¼ 5.6
m�

ne2
ffiffiffiffiffiffiffiffi
Tϵ0

p
∝ T3=2: ð15Þ

Despite the Drude-like appearance of Eq. (15), its
physical content is very different because transport in this
regime is controlled by off-shell electrons with ϵ̃ ≈ −ϵ0 and
ξ ∼ ϵ0. However, if one still chooses to interpret Eq. (15) in
a Drude-like way, the corresponding scattering time τD ∼
E1=2
0 =T3=2 is shorter than the Planckian bound, τP ¼ 1=T,

for T ≫ E0. In Supplemental Material [26], we show that
the analytic results in Eqs. (8), (12), and (15) are confirmed
by a numerical solution of Eq. (9). In particular, the inset in
Fig. 2 shows the resistivity obtained by substituting a
numerical solution of Eq. (9) into Eq. (14).
We now discuss briefly the role of other diagrams in

Fig. 1. For EF ≪ T ≪ E0, the higher-order umbrella
diagrams [Figs. 1(b), 1(c), etc.], provide corrections of
order

ffiffiffiffiffiffiffiffiffiffiffi
T=E0

p
, as specified in Eq. (7). For T ≫ E0, it is the

self-energy near the threshold that matters to transport.

Near the threshold, umbrella diagrams modify scaling
function S in Eq. (12) but not the square-root singularity
in ImΣ as a function of ϵ [26]. Therefore, these diagrams
affect only the numerical coefficient in Eq. (15) but not the
T3=2 scaling of ρ. Next, Fig. 1(e) is a vertex correction to
Fig. 1(a), which is small by an effective Migdal parameter,
m�s2=E0 ∼ 0.03 [26]. Finally, Fig. 1(f) describes a four-
phonon process, which gives a subleading correction to the
resistivity for T below the melting temperature.
We now compare the theoretical results to the data for

STO, restoring the gap (ω0) in the phonon dispersion. The
T dependence of ω0 is obtained by substituting the
measured ε0ðTÞ [36] into the LST relation [above
Eq. (5)]. However, due to a partial cancellation between
the T dependences of ω0 and of the rms electron momen-
tum, the T dependence of ω0 does not change the results
significantly [24–26]. The 2TO contribution to the resis-
tivity is described by an interpolation formula that repro-
duces the analytic results at low and high T [Eqs. (8) and
(15), respectively], with 2TO coupling constant g2 as a
fitting parameter. In the experiment, ρ varies faster than T2

at higher T: a power-law fit gives ρ ∝ T2.7−3 [6,42–44].
An exponent larger than 2 was conjectured to result from
multi-TO-phonon scattering [44]. However, we have shown
that TO scattering gives a slower than T2 variation of ρ for
T ≫ E0 [cf. Eq. (15)]. An alternative explanation of the
faster than T2 dependence is scattering by LO phonons
[45–48]. We adopt the latter model here and include
scattering by the 58 meV LO mode within the Low-
Pines approach [49], treating the Fröhlich coupling

(a)

(b)

FIG. 2. Resistivity of SrTiO3 [36] (minus the residual value ρ0) (points, red) vs theory (solid, black), which includes scattering by two
TO phonons and by the 58 meV LO phonon. An extrapolation of the theory to the regime of T < ω0 is shown by the dashed line. The
dash-dotted line is a T2 fit to the data (shifted for clarity). Insets: (a) The temperature dependence of the resistivity predicted by the 2TO
model, obtained by a numerical solution of Eqs. (9) and (14), along with the fits to the asymptotic results. Here, ρs ¼ m�E0=ne2. (b) An
enlargement on the low-temperature region of the main panel.
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constant α as a fitting parameter; details of the fitting
procedure are delegated to the Supplemental Material [26].
On the low-T side, the 2TO model should give ρ ∝

expð−ω0=TÞ for T ≪ ω0, whereas the observed resistivity
continues to scale down as T2 up to the lowest T measured
(2 K). Nevertheless, if we extrapolate our model to the
region of T ≤ ω0 (where it should not be applicable), it still
provides a surprisingly good fit of the data. A fit obtained in
this way is shown in Fig. 2 for g2 ¼ 0.92a30 and α ¼ 2.38
[50]. This value of g2, obtained from fitting over the entire
range of T, is slightly larger than 0.60a30, obtained by fitting
only the T2 part of the data. To the best of our knowledge,
no ab initio estimate of g2 is currently available and would
be highly desirable. The value of α is higher than α ≈ 0.7
[51] extracted from infrared reflectivity [52,53] and trans-
port at high T (200 < T < 1000 K) [45], but consistent
with other transport measurements in the intermediate
temperature range (100 < T < 200 K) [47,54].
While we do not have a good answer to the question why

the theory, extrapolated to T < ω0, still appears to describe
the experiment, we note that an exponential behavior of the
resistivity is obtained only if the TO mode is sharp. If it is
damped (which inelastic neutron [37,55], terahertz [56],
and microwave [57] spectroscopies indicate), the exponen-
tial behavior is replaced by a power-law one; however, the
exponent is still larger than 2 [58]. Also, recent diagram-
matic Monte Carlo calculations [59] have shown that the
onset of exponential behavior for a Fröhlich polaron is
shifted down to lower temperatures due to mass renorm-
alization; a similar effect can be expected for 2TO polarons.
Finally, we note that the 2TO model provides a falsifi-

able prediction because the scattering mechanism in this
model is (quasi)elastic. This can be verified by checking if
the electron part of the thermal conductivity and the
electrical conductivity obey the Wiedemann-Franz law
(if the model is valid, they should) and if the optical
conductivity scales with T=ω (it should not).
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