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Braginskii extended magnetohydrodynamics is used to model transport in collisional astrophysical
and high energy density plasmas. We show that commonly used approximations to the α⊥ and β⊥
transport coefficients [e.g., Epperlein and Haines, Phys. Fluids 29, 1029 (1986)] have a subtle
inaccuracy that causes significant artificial magnetic dissipation and discontinuities. This is because
magnetic transport actually relies on βk − β⊥ and α⊥ − αk, rather than α⊥ and β⊥ themselves. We
provide fit functions that rectify this problem and thus resolve the discrepancies with kinetic simulations
in the literature. When implemented in the Gorgon code, they reduce the predicted density asymmetry
amplitude at laser ablation fronts. Recognizing the importance of α⊥ − αk and βk − β⊥, we recast the set
of coefficients. This makes explicit the symmetry of the magnetic and thermal transport, as well as the
symmetry of the coefficients themselves.
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Treatment of collisional magnetized plasma with the
electron-ion two-fluid approach leads to the extended
magnetohydrodynamic (ExMHD) theory of plasma trans-
port [1]. This has successfully described magnetic field
dynamics in high energy density (HED) plasmas such as Z
pinches [2], laser plasmas [3,4], fast ignition fusion
concepts [5], dense fusion fuel hot spots [6], and laser
ablation fronts [7]. ExMHD results in an intricate set of
plasma feedback interactions. Coulomb collisions give
rise to Ohmic resistance. Electron temperature gradients
produce thermoelectric forces, since hotter electrons
are less susceptible to collisions. The resulting magnetic
field advection can greatly exceed that due to the ideal
advection with the fluid [8]. The magnetic field also
insulates and deflects the electron heat flow [4], causing
changes to heat confinement and hydrodynamics.
Coupling of these effects can result in growth of magnetic
fields at the expense of fluid energy [9], under processes
such as the thermomagnetic instability [10,11]. ExMHD
effects are also important for magnetic reconnection [12]
in the weakly collisional plasma found in galaxy clusters
and jets. Laboratory experiments emulating these mag-
netized jets [13] and the turbulent dynamo process [14]
also require ExMHD modeling.
Derivation from the kinetic equation [1] showed that the

heat flux, resistive, and thermoelectric processes should be
described by tensors dependent on the magnetic field B.
Typically, simulation codes use an implementation given in
Ref. [15], in which the electric field E was numerically
calculated from kinetic theory and then fitted with tabulated
functions for the resistive (αk, α⊥, α∧) and thermoelectric
(βk, β⊥, β∧) transport coefficients. Studies using the

ExMHD codes Gorgon [6] and Hydra [16] found that
heat insulation from self-generated magnetic fields can
significantly change HED plasma temperature profiles.
Accurate transport coefficients are therefore of consider-
able importance.
In this work, we show that, rather than α⊥ and β⊥, the

primary quantities for magnetic transport are α⊥ − αk
and βk − β⊥. Recasting the coefficient set in terms of these
quantities reveals the inherent symmetry between the
magnetic and heat transport, and the symmetry of the
coefficients themselves. This was not recognized in the fit
functions of Ref. [15], leading to inaccurate values when
calculating α⊥ − αk and βk − β⊥. This means that many
ExMHD simulations in the literature, for example those
using the Gorgon [6,7], Hydra [16,17], and CTC [18] codes,
have suffered fundamentally incorrect magnetic transport,
resulting in discontinuities. We provide new fit functions
that correctly reproduce the behavior of detailed kinetic
calculations, and then implement them in the Gorgon code.
Comparisons show that previous ExMHD simulations
have significantly overestimated the cross-gradient
Nernst advection and the resulting magnetic dissipation.
This then invalidates the magnetized thermal transport and
hydrodynamics. For example, the new fits reduce the
predicted asymmetry of inertial confinement fusion laser
ablation fronts.
The magnetic transport is described by the tensor

ExMHD generalized Ohm’s law, given by [1,15]

E ¼ −u ×Bþ J ×B
nee

−
∇ · Pe

nee
þmeα · J

nee2τ
−
β ·∇Te

e
; ð1Þ
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α · J ¼ αkðJ · b̂Þb̂þ b̂ × ðα⊥J × b̂ − α∧JÞ; ð2Þ
β ·∇Te¼βkð∇Te · b̂Þb̂þ b̂×ðβ⊥∇Te× b̂þβ∧∇TeÞ: ð3Þ

The first term in Eq. (1) is the relativistic transformation
from the ion fluid rest frame at velocity u and, taken
alone, yields ideal MHD. The Ohm’s law also depends on
the electron charge −e, mass me, number density ne, and
temperature Te. In quasineutral plasma ne ¼

P
j njZj,

where nj is the number density of ion species j with
ionization Zj. Electric fields also arise due to currents J,
and due to gradients in the electron pressure tensor Pe. The
inertial term has been neglected.
Coulomb collisions cause the final two terms in Eq. (1).

They are decomposed into an orthogonal basis parallel and
perpendicular to the field direction b̂ ¼ B=jBj. Each
component has its own dimensionless and positive trans-
port coefficient α⊥ðχ; Z̄Þ, α∧ðχ; Z̄Þ, and αkðZ̄Þ ¼ α⊥ð0; Z̄Þ.
Together these describe the magnetized deflection and
inhibition of currents. Similarly, the collisional thermal
force or thermoelectric term in Eq. (3) is driven by electron
temperature gradients and depends on the coefficients
β⊥ðχ; Z̄Þ, β∧ðχ; Z̄Þ, and βkðZ̄Þ ¼ β⊥ð0; Z̄Þ. These are func-
tions of the average ion charge state Z̄¼ðPjnjZ

2
jÞ=

ðPjnjZjÞ and the dimensionless electron magnetization

χ ¼ ejBjτ
me

≃
6 × 1016

Z̄ lnðΛÞ
�
Te

eV

�3
2

�
ne

cm−3

�
−1
�jBj

T

�

; ð4Þ

where the electron Coulomb collision time is

τ ¼ 3
ffiffiffi
π

p
4

4πϵ20m
2
ev3th

neZ̄e4 lnðΛÞ
: ð5Þ

These expressions contain the electron-ion Coulomb log-
arithm [assumed to be lnðΛÞ ≫ 1], the vacuum permittivity
ϵ0 and the electron thermal speed vth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Te=me

p
.

We now make the standard MHD assumption to retain
only slow oscillations and therefore neglect displacement
current, yielding J ¼ c2ϵ0∇ × B. Following Ref. [19],
manipulation of Eqs. (1)–(3), using the vector components
J ¼ b̂ðJ · b̂Þ þ b̂ × ðJ × b̂Þ, leads to the simplified form

E ¼ −uB×BþDk∇ ×B −
∇ · Pe

nee
−
βk
e
∇Te; ð6Þ

uB ¼ u − ð1þ δ⊥Þ
J
nee

þ δ∧
J × b̂
nee

− γ⊥
τ

me
∇Te þ γ∧

τ

me
∇Te × b̂; ð7Þ

where we have defined the magnetic advection velocity uB

and the resistive magnetic diffusivity Dk ¼ mec2ϵ0αk=
ðnee2τÞ. The required α and β combinations motivate the
definition of new transport coefficients [19]

δ⊥ðχ; Z̄Þ ¼
α∧
χ
; γ⊥ðχ; Z̄Þ ¼

β∧
χ
; ð8Þ

δ∧ðχ; Z̄Þ ¼
α⊥ − αk

χ
; γ∧ðχ; Z̄Þ ¼

βk − β⊥
χ

: ð9Þ

The evolution of B is then found via Faraday’s law
∂tB ¼ −∇ ×E. In order of appearance, the terms in
Eq. (6) are then responsible for advection ofBwith velocity
uB, resistive diffusion of B, the Biermann battery source
term, and the Z-gradient source term [20,21]. This form of
Ohm’s law has the advantage that the sole appearance of
ExMHD effects, that is, the ⊥ and ∧ coefficients, is within
the magnetic advection velocity uB in Eq. (7). The coef-
ficients Dk and βk for the other terms in Eq. (6) are those
from the simpler resistive-MHD model and they do not
depend on B.
In addition to the usual Dk resistive diffusion, the δ⊥

and δ∧ resistive terms alter the Hall velocity −J=ðneeÞ in
Eq. (7), both in the parallel and transverse directions.
Similarly, the thermal force causes Nernst advection
[22,23] of B down the temperature gradient and cross-
gradient Nernst advection perpendicular to it, with coef-
ficients γ⊥ and γ∧, respectively [16,19,24–26].
We note that it is not the αk, α⊥, βk, and β⊥ coefficients

that dictate magnetic transport, but rather the differences
between them. This is recognized in the definitions in
Eq. (9). However, we later show that the fits from Ref. [15]
cannot accurately calculate δ∧ and γ∧.
The δ and γ coefficients are fundamental in exposing

the symmetry of the magnetic and thermal transport. This
becomes apparent when Eq. (7) is compared with the
electron heat flow [15]

qe ¼ −
neTeτ

me
κ ·∇Te −

Te

e
β · J: ð10Þ

The total electron energy flux, including the enthalpy flux
and heat flow, is given by Ueue þ Pe · ue þ qe, where
Ue ¼ menejuej2=2þ TrðPeÞ=2 is the electron fluid energy
density and ue ¼ u − J=ðneeÞ. Taking isotropic electron
pressure with Pe ¼ neTeI and assuming juej ≪ vth, this
total energy flux can be written as neTeuq, with

uq ¼
5

2
u−

�
5

2
þβ⊥

�
J
nee

þβ∧
J× b̂
nee

− κ⊥
τ

me
∇Teþ κ∧

τ

me
∇Te× b̂

− ðβk−β⊥Þ
ðJ · b̂Þ
nee

b̂− ðκk−κ⊥Þ
τ

me
ðb̂ ·∇TeÞb̂: ð11Þ

After replacing the δ and γ coefficients with their β and κ
counterparts, Eqs. (7) and (11) are almost equivalent. The
only differences are the greater coefficient of u and the

PHYSICAL REVIEW LETTERS 126, 075001 (2021)

075001-2



additional corrections along b̂ in Eq. (11), whereas mag-
netic advection along B is not possible.
It turns out that, by defining the δ and γ coefficients to

bring Eqs. (7) and (11) into a symmetric form, the
coefficients themselves become symmetric. To show this,
we must calculate them using Eqs. (8) and (9). Using the
results of Braginskii [1], this results in limχ→0 γ∧ ¼ 0, such
that weak magnetic fields are Nernst advected purely down
the temperature gradient. Epperlein and Haines (EH) [15]
later improved the coefficient dependencies for χ → ∞.
However, the importance of accurately calculating α⊥ − αk
and βk − β⊥ was not recognized in the EH fits, or in other
more recent works [27–29]. As a result, the EH approxi-
mation for β⊥ implies that limχ→0 γ∧ ≃ 1, resulting in a
diagonal total Nernst advection across ∇Te. Although
superficially in agreement with Braginskii, the EH fits
therefore produce fundamentally different magnetic trans-
port for χ ≪ 1. There is a similar disagreement for
limχ→0 δ∧ and the cross-Hall transport.
We now resolve this discrepancy and provide new fit

functions. Our kinetic results follow those of Ref. [15], in
which electrons are treated with the Fokker-Planck equa-
tion, with static ions. The electron distribution function is
expanded [30,31] into its isotropic and anisotropic parts via
feðvÞ¼ f0ðvÞþv · f1ðvÞ=v, where v ¼ jvj. This is valid for
plasma with shallow gradients, such that vthτj∇Tej=Te ≪ 1
and vthτj∇nej=ne ≪ 1. This local assumption yields a
Maxwellian f0 ≃ ne=ðvth

ffiffiffi
π

p Þ3 expð−v2=v2thÞ. Several
authors [32–34] have examined departures from this
assumption. In a uniform plasma, f1 reaches a steady state
given by

e
me

�

E
df0
dv

þ B × f1

�

−
3

ffiffiffi
π

p
4

v3th
v3

f1
τ
þCee ¼ 0: ð12Þ

The electron-ion collision operator in Eq. (12) is a decay of
f1 on a timescale τ, whereas the electron-electron operator
Cee is more complex and is given in Ref. [31].
Equation (12) was solved numerically via an explicit

iterative method, using fourth order numerical integrals
and finite differences. The uniform velocity grid extended
to 8vth with resolution vth=15. We assumed a fixed
electric field and varied the transverse magnetic field.
The steady state f1 was then numerically integrated [30]
to yield the current J ¼ −ð4πe=3Þ R∞

0 f1v3dv and heat flux
qe ¼ 5TeJ=ð2eÞ þ ð2πme=3Þ

R
∞
0 f1v5dv. The α, β, δ, and γ

coefficients are then found from Eqs. (1), (2), (10) and (8),
(9), using the fact that ∇Te ¼ u ¼ 0.
The results for δ∧ and γ∧ are presented in Fig. 1,

alongside estimates using the EH fit functions [15] in
Eq. (9). The EH fits are sufficiently accurate to calculate δ⊥
and γ⊥ with Eq. (8), but should not be used to calculate δ∧
and γ∧ for χ < 1 with Eq. (9). Some new fit functions,
remaining simultaneously accurate for α⊥, β⊥, δ∧, and γ∧,
are given by

α⊥ðχ; Z̄Þ ¼ αk þ
χ2 þ ð1 − αkÞχ3

α0 þ α1χ þ α2χ
2 þ χ3

; ð13Þ

β⊥ðχ; Z̄Þ ¼ βk
1þ 8

9
β1χ

ð1þ β1χ þ β2χ
2 þ β3χ

3Þ8=9 : ð14Þ

The dashed green curves in Fig. 1 show the result of
substituting these fit functions into Eq. (9). The αj and βj fit
parameters were found using a Powell optimization algo-
rithm and are tabulated for arbitrary Z̄ ≥ 1 in the
Supplemental Material [35]. The unphysical aspect of
the EH fits is a degree of freedom that allows
ð∂α⊥=∂χÞjχ¼0 ≠ 0 and ð∂β⊥=∂χÞjχ¼0 ≠ 0. This is removed
for Eqs. (13) and (14), which have an enforced zero
derivative.
The full set of δ, γ, β, and κ transport coefficients are

plotted in Fig. 2 for the case Z̄ ¼ 1. Together with αkðZ̄Þ
and βkðZ̄Þ, these constitute a complete set. It is now
obvious why we have labeled these the symmetric coef-
ficients, since, in contrast to the (now defunct) α⊥ coef-
ficient, all of them now have the same overall shape. By
defining the δ and γ coefficients to bring Eqs. (7) and (11)
into their symmetric form, the set of transport coefficients
also becomes symmetric.
To assess the impact of the new fit functions on

experimental predictions, they were implemented in the
ExMHD code Gorgon [19]. A test problem investigated
perturbation smoothing within a direct-drive inertial con-
finement fusion ablation front. The simulation used a two-
dimensional azimuthally symmetric spherical coordinate
system with resolution 1 μm in r and 0.25° in θ. The
430 μm outer radius carbon hydrogen (CH) capsule was

(a)

(b)

FIG. 1. Plots of the kinetic (a) δ∧ cross-Hall and (b) γ∧ cross-
Nernst transport coefficients for Z̄ ¼ 1, fitted using Eqs. (13) and
(14) in Eq. (9). The results of Epperlein and Haines (EH) [15] are
only accurate for χ > 1.
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irradiated with a 1 ns, 18 kJ laser drive, producing intensity
7 × 1014 Wcm−2. The laser had a �10% amplitude mode
12 sinusoidal power perturbation along θ, leading to
hydrodynamic imprint
and self-generation of azimuthal magnetic field via the
Biermann battery. For these conditions, Hall transport is
negligible and uB is dominated by the ideal and Nernst
terms. The simulations used heat flux limiter 0.06 and
multigroup radiation transport. The simulations match those
detailed in Ref. [26], albeit with no premagnetization.
The results are plotted in Fig. 3. The magnetic field

reaches 40T after 1 ns, producing electron gyroradius

≃3 μm and maximal χ ≃ 0.03. The magnetic field has
the same mode 12 profile as the laser perturbation. It is
compressed into the conduction zone because the inward
Nernst advection exceeds the outward ideal advection.
The EH fit functions [15] predict a finite cross-gradient

Nernst velocity ≃ðτ=meÞ∇Te × b̂ for these weak fields
[Fig. 1(b)], resulting in diagonal total Nernst streamlines in
Fig. 3(a). At spatial positions with jBj ¼ 0, b̂ is undefined,
yielding a discontinuity. The new fit functions, on the other
hand, predict no such discontinuity and give predominantly
radial total Nernst advection in Fig. 3(b).
The effect of this transport on the radially integrated

magnetic field profile is shown in Fig. 4. The EH fits
artificially advect opposite polarityB field regions together.
This results in a discontinuity and a shift of the field profile.
This artificial shift has majorly impacted the magnetized
heat conduction profile in ExMHD simulations, and is
therefore of more than just theoretical interest. For exam-
ple, Fig. 5 shows the areal mass density. The updated
magnetic transport predicts a reduced density perturbation
amplitude when compared to the simulation using the EH
fits. Since these perturbations are a seed for implosion fluid
instabilities, a major degradation mechanism, this improved
magnetic transport could significantly affect the overall
fusion performance.

FIG. 4. Comparison of the radially integrated azimuthal B field
for the two cases, shown after 1 ns.

FIG. 5. Comparison of the radially integrated mass density for
the two cases, shown after 1 ns.

(a)

(c) (d)

(b)

FIG. 2. The symmetric form of the transport coefficients for
Z̄ ¼ 1. (a) The Hall coefficients δ⊥ and δ∧. (b) The Nernst
coefficients γ⊥ and γ∧. (c) The thermoelectric coefficients β⊥ and
β∧. (d) The Spitzer coefficients κ⊥ and κ∧.

FIG. 3. Magnetic field from the 2D ExMHD Gorgon simu-
lations of a perturbed direct-drive laser ablation front, shown after
1 ns. Simulations used the transport coefficient fits of (a) Epper-
lein and Haines (EH) [15] and (b) this work. Streamlines show the
total Nernst velocity, calculated using the final two terms of
Eq. (7).
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In fact, there are many other improvements when
comparing ExMHD to previous kinetic results. In the
2D simulations of Hill and Kingham [36] with χ < 0.1,
the cross-gradient Nernst velocity was 3 orders of magni-
tude less than the standard Nernst velocity, in agreement
with Fig. 3(b). This remained true even in the denser
regions close to the target, where classical transport theory
is expected to hold. A comparative lack of cross-gradient
Nernst advection was also observed in kinetic simulations
of the thermomagnetic instability, both with a Vlasov-
Fokker-Planck [11] and particle-in-cell [37] approach.
In summary, we have shown that, once recast into a new

set, all of the transport coefficients have the same behavior.
This elucidates the symmetry of the magnetic and thermal
transport in a collisional magnetized plasma. To accurately
calculate magnetic transport for χ < 1, the fit functions of
Epperlein and Haines [15] must be updated. These previous
fit functions massively overestimated the cross-Nernst and
cross-Hall advection, causing artificial magnetic disconti-
nuities and dissipation. The new fits also explain the
apparent discrepancies between kinetic simulations [36]
and ExMHD simulations in the literature. This more natural
and accurate description of magnetic transport will improve
modeling capabilities for a wide range of magnetized HED
plasma experiments.
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