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We solve the advection-diffusion equation for a stochastically stationary passive scalar θ, in conjunction
with forced 3D Navier-Stokes equations, using direct numerical simulations in periodic domains of various
sizes, the largest being 81923. The Taylor-scale Reynolds number varies in the range 140–650 and the
Schmidt number Sc≡ ν=D in the range 1–512, where ν is the kinematic viscosity of the fluid and D is the
molecular diffusivity of θ. Our results show that turbulence becomes an ineffective mixer when Sc is large.
First, the mean scalar dissipation rate hχi ¼ 2Dhj∇θj2i, when suitably nondimensionalized, decreases as
1= log Sc. Second, 1D cuts through the scalar field indicate increasing density of sharp fronts on larger
scales, oscillating with large excursions leading to reduced mixing, and additionally suggesting weakening
of scalar variance flux across the scales. The scaling exponents of the scalar structure functions in the
inertial-convective range appear to saturate with respect to the moment order and the saturation exponent
approaches unity as Sc increases, qualitatively consistent with 1D cuts of the scalar.
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Introduction—A defining property of fluid turbulence,
which plays a critical role in myriad natural and engineer-
ing processes, is that it mixes substances extremely well
[1–3]. Thus, any circumstances in which turbulence loses
that property is naturally important to study and under-
stand. This Letter examines such an instance by consider-
ing mixing of passive scalars with large Schmidt numbers,
Sc≡ ν=D, where ν is the kinematic viscosity of the fluid
and D is the molecular diffusivity of the mixing substance.
By analyzing a massive database generated through state-
of-the-art direct numerical simulations (DNS) of the
governing equations, we show that even fully developed
turbulence at high Reynolds number becomes an ineffec-
tive mixer when the Sc is rendered large.
The rate of mixing of a scalar θ is related to the average

“dissipation” rate hχi of its variance, defined as
hχi ¼ 2Dhj∇θj2i. There is a general claim that hχi remains
finite even when D → 0. This claim derives from the
analogy with the mean dissipation rate of turbulent kinetic
energy, which is theorized to be independent of viscosity
when the latter is sufficiently small (ν → 0) [4,5]. There is
concrete empirical evidence that anomalous dissipation of
kinetic energy is essentially correct [6–9]. However,
whether the analogous property holds for scalar dissipation
still remains an unresolved question [10–13]. We show that
it does not when Sc is large.
Since the passive scalar is advected by the underlying

velocity field, investigating scalar dissipation anomaly
in principle requires the joint limit of ν; D → 0. Specific

practical circumstances on how they approach zero, moti-
vate two separate scenarios. In the first scenario, we can
take the joint limit such that Sc is a constant and thus the
Reynolds number increases. For this case, there is some
evidence at Sc ¼ Oð1Þ that the scalar dissipation indeed
becomes independent of D [13]. Figure 1 reaffirms this by
showing that hχi, nondimensionalized by the large-scale
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FIG. 1. Normalized scalar dissipation rate for Sc ¼ 1, as a
function of microscale Péclet number Peλ ∝ 1=D. The data in
(blue) triangles are from [13]; the new data are described in
Table I. The functional form of the fit to the data in [13] is shown
in the legend, with c1 ¼ 0.36 and c2 ¼ 31.
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quantity hθ2iu0=L, asymptotes to a constant for large
Taylor-scale Péclet number Peλ ¼ u0λ=D, where u0 is the
rms of velocity fluctuations, λ ¼ u0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hð∂u=∂xÞ2ip

is the
Taylor microscale, and L is the integral length scale.
In the second scenario, either ν or D approaches zero

faster, such that the Sc → 0 or ∞, respectively. Here, we
focus on the latter case of Sc → ∞ [14]. The mixing of
scalars with Sc ≫ 1 is characterized by the development of
very fine scales, even smaller than those in the velocity
field, which are extremely challenging to resolve in both
experiments and simulations [15,16]. Consequently, the
study of high Sc scalars has been historically limited to very
low Reynolds numbers, where the turbulence is not
adequately developed. However, even at very low
Reynolds numbers, there has been some indication that
the asymptotically constant values of ðhχiLÞ=ðhθ2iu0Þ
become smaller with increasing Sc [13]. In this Letter,
utilizing new state-of-the-art simulations at significantly
higher Reynolds numbers (corresponding to fully devel-
oped turbulence), we present new results which demon-
strate conclusively that the normalized scalar dissipation
rate approaches zero at large Sc, rendering turbulence
ineffective at mixing. We additionally show that this

inefficacy is also carried over to the larger scales, with
important theoretical and practical implications.
Direct numerical simulations.—The data utilized here

are generated using the canonical DNS setup of isotropic
turbulence in a periodic domain [17,18], forced at large
scales to maintain statistical stationarity. For the passive
scalar, we simultaneously solve the advection-diffusion
equation in the presence of uniform mean-gradient
∇Θ ¼ ðG; 0; 0Þ along the Cartesian direction x [19]. For
Sc ¼ 1, we utilize the conventional Fourier pseudospectral
methods for both the velocity and scalar fields. For Sc ¼ 4

and higher, we utilize a hybrid approach [20–22], where the
velocity field is obtained pseudospectrally, focused on
resolving the Kolmogorov length scale η, and the
scalar field by using compact finite differences on a finer
grid to adequately resolve the smaller Batchelor scale
ηB ¼ ηSc−1=2 [23]. The database is summarized in Table I.
For many cases, we have performed simulations with
various small-scale resolutions to ensure accuracy of the
statistics [24]. Our runs also meet the resolution require-
ments proposed in [25]. However, we note that while [25]
was focused on studying extreme events, the statistics
reported in this work are not as sensitive to resolu-
tion [26,27].
Reduction of mixing at diffusive scales.—Here, we

explore the influence of Sc on mean scalar dissipation rate
hχi. We see in Fig. 2 that the asymptotic value of scalar
dissipation continually decreases with Sc. In fact, using
arguments based on functional form of the scalar spectrum,
the authors of Refs. [13,28] showed that the inverse scalar
dissipation rate ðhθ2iu0Þ=ðhχiLÞ varies as log Sc. In order to
see this behavior clearly, we plot the inverse dissipation

TABLE I. Simulation parameters for the DNS runs used in the
current work: the Taylor-scale Reynolds number Rλ, the Schmidt
number Sc, the number of grid points for the velocity and scalar
fields, N3

v and N3
θ, the spatial resolution for the velocity and scalar

fields, respectively kmaxη and kmaxηB, and the simulation length
Tsim in statistically stationary state in terms of the large-eddy
turnover time TE. For each case, the domain length is L0 ¼ 2π,
and L ≈ L0=6.

Rλ Sc N3
v kmaxη N3

θ kmaxηB Tsim=TE

140 1 5123 3 5123 3 10
140 4 5123 3 10243 3 90
140 4 5123 3 20483 6 27
140 8 2563 1.5 10243 2 90
140 8 5123 3 10243 2 85
140 8 5123 3 20483 4 45
140 16 2563 1.5 10243 1.5 98
140 16 2563 1.5 20483 3 44
140 16 5123 3 10243 1.5 84
140 16 5123 3 20483 3 56
140 32 5123 3 20483 2 44
140 32 5123 3 20483 2 19
140 32 10243 6 40963 4 11
140 64 5123 3 20483 1.5 53
140 64 10243 6 40963 3 9
140 128 5123 3 40963 2 23
140 256 10243 6 81923 3 6
140 512 10243 6 81923 2 9
240 1 10243 3 10243 3 10
390 1 20483 3 20483 3 10
390 8 20483 3 81923 4 6
650 1 40963 3 40963 3 10
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FIG. 2. Test for scalar dissipation anomaly at Rλ ¼ 140 with
increasing Sc. The mean scalar dissipation rate is normalized as in
Fig. 1. The dashed line corresponds to 1= log Sc dependence. The
inset shows the inverse of these data versus Sc on log-linear axes,
affirming the log Sc dependence.
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versus log Sc in the inset of Fig. 2. The data are in excellent
agreement with expectations.
The observation that the normalized scalar dissipation

tends to zero in the limit Sc → ∞, albeit logarithmically,
suggests that the diffusivity is ultimately incapable of
smoothing the scalar fluctuations and that there is no
mixing at small scales. This picture can be intuitively
understood from a Lagrangian perspective by considering
trajectories of individual scalar particles [29–31].
Physically, mixing occurs when some local concentration
of scalar particles eventually disperses through the fluid
under the combined action of turbulence and molecular
diffusion. If we consider two coincident scalar particles, the
diffusivity is necessary to create some finite separation,
thereafter allowing turbulence to take over; however, in the
limit of D → 0, they cannot separate and the action of
turbulence does not manifest [32,33].
Reduced mixing at larger scales.—Figure 3 shows

typical 1D cuts of the scalar field in the direction of
the mean gradient. The upper panel corresponds to Sc ¼ 1
and increasing Rλ. The well known ramp-cliff structures
(see [34–37]) are clearly visible in all traces, with
disorganized small-scale fluctuations superimposed on
them. With increasing Rλ, small-scale fluctuations expect-
edly become more conspicuous, but the steep cliffs
remain. In the lower panel, the cuts are for Rλ ¼ 140
but varying Sc. For low to moderate Sc, the ramp-cliff
structures stand out as before, but the superimposed scalar
fluctuations become stronger with increasing Sc. The
large-scale ramp-cliff structures seemingly continue to
be present even at the highest Sc (¼ 512), but are over-
whelmed by sharp oscillations essentially between the
smallest and largest concentrations, leading to inefficient
mixing at larger scales.
It is worth noting that the scalar dissipation also

represents the scalar variance flux from the large scales
through intermediate (inertial) scales to the smallest
(analogous to the energy dissipation representing the
flux of kinetic energy). Since the inertial range dynamics
are not influenced by either ν or D, in principle the
dimensional scalar dissipation can still be nonzero as Sc
increases. However, in contrast the scalar variance
increases with Sc (ostensibly through a broadening
viscous-convective range), and thus causes the normal-
ized scalar dissipation to approach zero. In other words,
as Sc is increased, turbulence responds not only by
producing strong scalar gradients, but even stronger
scalar fluctuations, which ultimately lead to inefficient
mixing.
Structure functions.—To further analyze the reduction in

mixing, we consider the scalar increment Δrθ between two
points separated by distance r, whose moments are the scalar
structure functions. In the so-called inertial-convective range,
thepth order structure function is expected to follow a power
law of the form hðΔrθÞpi ∼ rζp , where ζp is anomalous with

respect to the Kolmogorov phenomenology (i.e., ζp ¼ p=3)
[2,11,38]. In order to extract ζp, we have followed an
analysis similar to the recent work [26] where ζ2 was
obtained by a power law fit in the inertial-convective range,
and higher order moments were extracted through extended
self-similarity [39].
The scaling exponents ζp are plotted against the moment

order in Fig. 4, for Rλ ≥ 390. The results for Rλ ¼ 650 and
Sc ¼ 1 are virtually identical to those of [26], and reaffirm
that the scalar exponents saturate to limp→∞ ζp ¼ ζ∞ ≈ 1.2.
In comparison, the exponents for Rλ ¼ 390 and Sc ¼ 1 are
mostly identical to those at Rλ ¼ 650, but differ somewhat
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FIG. 3. Typical one-dimensional cuts of the scalar field,
normalized by the rms, in the direction of the imposed mean
gradient (x). L0 ¼ 2π is the domain length. The curves in the
upper panel correspond to fixed Sc ¼ 1 and Rλ ¼ 140, 390,
and 650 from top to bottom; those in the lower panel are for
fixed Rλ ¼ 140 and Sc ¼ 1, 8, 64, and 512 from top to bottom.
The curves are shifted for clarity, as indicated by dotted
horizontal lines.
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for p ≥ 12 (possibly due to a slightly smaller scaling range
from which the exponents were extracted). The more
important result is that for Rλ ¼ 390 and Sc ¼ 8 the
exponents are consistently smaller than those for Sc ¼ 1
and tend to saturate at a smaller value of ζ∞ ≈ 1.1.
Evidently, the smaller saturation value for larger Sc
invites the question as to whether it is bounded as
Sc → ∞.
For a definitive answer, one needs to obtain data for

higher Sc for at least Rλ ¼ 650 (at which convincing

scaling exists). But large Sc at Rλ ¼ 650 are unlikely to
be attainable anytime soon. We have therefore analyzed the
data at lower Rλ ¼ 140, for which inertial range character-
istics just begin to manifest [17,40]. In Fig. 5, we show the
local slope of the structure functions for orders p ¼ 4, 8,
12, and 16 at Sc ¼ 32, 128, and 512 (the curves for
different p are shifted for clarity). With increasing p, the
curves for all Sc progressively get closer to local slope of
unity. If we focus on the region r=η≳ 30, which nominally
corresponds to onset of the inertial-convective range [26], it
appears that the local slope for all Sc are approximately
equal for highest p values, and close to unity—hinting
that the high-order exponents saturate at about 1 as
Sc → ∞.
Codimension result.—Finally, we turn to quantifying the

fractal dimension of sharp scalar fronts and understanding
how it relates to the saturation exponent. In [26], the
authors found that ζ∞ and the box-counting dimension DF
of the sharp scalar fronts (satisfying the threshold
j∂θ=∂xj ≥ 0.2θrms=ηB), add up to the Euclidean dimension
of the flow, i.e., ζ∞ þDF ¼ 3. In that same spirit, we
perform box counting of the strong scalar gradients
corresponding to sharp fronts, given by NðrÞ for various
cubes of edge size r. For the saturation exponent ζ∞ ¼ 1,
the codimension corresponds to DF ¼ 2. In Fig. 6, we plot
NðrÞ=N3 compensated by rDF with DF ¼ 2, for the same
cases shown in Fig. 5. Remarkably, the curves at the highest
Sc exhibit an extended plateau for small scales, consistent
with a fractal dimension of 2. For large r, all curves are
consistent with DF ¼ 3, as expected by the space filling
nature at large scales. This consolidates the result that
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FIG. 4. The scalar increment exponent ζp as a function of the
moment order p for Rλ and Sc shown in the legend. The error bars
indicate 95% confidence interval. The dotted lines at 1.2 and 1.1
correspond to plausible saturation values at Sc ¼ 1, 8, whereas
the dotted line at 1 is the likely saturation value at Sc → ∞. The
dashed line ζp ¼ p=3 corresponds to the Kolmogorov phenom-
enology.
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FIG. 5. The local slope of pth order scalar structure functions at
Rλ ¼ 140 and Sc ¼ 32, 128, and 512. The curves are shown for
p ¼ 4, 8, 12, and 16. They are shifted vertically for clarity and the
corresponding dashed lines represent a local slope of unity.
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FIG. 6. Compensated plot of NðrÞ, the number of cubes of side
r containing the scalar fronts satisfying the threshold condition
j∂θ=∂xj ≥ 0.2θrms=ηB [26]. Curves are shown for Sc ¼ 8, 32,
128, and 512 for Rλ ¼ 140. N3 is the total number of grid points.
DF ¼ 3 − ζ∞ is the fractal codimension. We set DF ¼ 2 corre-
sponding to ζ∞ ¼ 1.
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fractal dimension of sharp fronts is the codimension of the
saturation exponent of scalar structure functions.
Conclusions.—We have demonstrated by several means

that fully developed turbulence, which enabled effective
mixing at unity Sc, becomes an ineffective mixer when Sc is
large. The scalar-dissipation-rate, when nondimensionalized
by large-scale quantities, decreases with Sc and the scalar
field effectively oscillates between the largest and smallest
concentrations without producing many intermediate levels.
We find that the exponents of scalar structure functions
saturate for high-order moments; the saturation value appears
to be bounded by unity, which is also confirmed by showing
that large excursions in ∂θ=∂x have a codimension of 2.
These results form an important ingredient in a fuller
understanding of turbulent mixing, and we note that models
like 1D-Burgers equation [41] and Kraichnan’s passive
scalar [42] have the same behavior of saturated exponents
for large moment orders, leveling off at unity.
From a theoretical perspective, our results invite revi-

sions to existing phenomenology of scalar turbulence
(for large Sc). While we have considered mixing of passive
scalars, it would be instructive to extend these results to
active scalars at large Sc, e.g., salinity in the ocean
(Sc ∼ 700). In oceanic mixing, it is often assumed that
the turbulent flux of salinity is equal to that of heat, despite
the latter occurring at Sc ∼ 7. However, the current study,
together with the work of [15], provides strong evidence
against it. On a related note, it has been shown in a
subsequent analysis [43] that the results reported here are
seemingly connected to a Sc correction to the Batchelor
length scale, which can play an important role for both
passive and active scalars.
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