
 

Approaching Single-Photon Pulses

Jan Gulla 1 and Johannes Skaar 2,*

1Department of Technology Systems, University of Oslo, NO-0316 Oslo, Norway
2Department of Physics, University of Oslo, NO-0316 Oslo, Norway

(Received 22 May 2020; accepted 22 January 2021; published 19 February 2021)

Single-photon pulses cannot be generated on demand, due to incompatible requirements of positive
frequencies and positive times. Resulting states therefore contain small probabilities for multiphotons. We
derive upper and lower bounds for the maximum fidelity of realizable states that approximate single-photon
pulses. The bounds have implications for ultrafast optics; the maximum fidelity is low for pulses with few
cycles or close to the onset, but increases rapidly as the pulse envelope varies more slowly. We also
demonstrate strictly localized states that are close to single photons.
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It is well known that single photons cannot be strictly
localized. The energy density has a tail falling off almost
exponentially or more slowly [1], as dictated by the
Paley-Wiener criterion [2,3] from the absence of negative
frequencies. A photon propagating in the þx direction
cannot be localized with respect to x [4] or with respect to
time t. This means that perfect single photons cannot be
generated locally on demand.
On the other hand, classical pulses can be localized to

any extent, by having a suitable, broadband spectrum of
positive and negative frequencies. Also coherent quantum
states can be strictly localized [1,5]. As a result, they can in
principle be generated on demand.
Coherent states are however quite different from single-

photon states. The natural question is therefore whether it is
possible to generate optical states that are close to single
photons. Clearly, the answer must be yes, as evident from
the vast amount of proposals and reported experiments to
generate single photons (see, e.g., review articles [6–10]
and references therein).
In this work, we ask how close to a single photon we in

principle can come. The key requirement for states real-
izable on demand is causality: they cannot be measured
before they are produced, meaning that the state must be
indistinguishable from vacuum before the information from
the source has had time to propagate to the observation
point. We will also comment on situations where the state is
generated with postselection instead, where the require-
ments are different.
The maximum fidelity between a state realizable on

demand and a single-photon state will turn out to be
dependent on the desired pulse form of the photon:
Ultrashort pulses, with a pulse length of the order of a
single cycle, or pulses with rapidly varying envelopes give
a low fidelity. Similarly, the fidelity is low if the pulse is
close to the onset and must be truncated. On the other hand,
for pulses with slowly varying envelopes compared to the

cycles, e.g., quasi-monochromatic Gaussian pulses, the
realizable fidelity can be extremely close to unity.
Bounds for single-photon approximations are clearly

interesting from a theoretical point of view. First, they
characterize the set of realizable states that approximate
single photons. In addition, the analysis leads to a family of
strictly localized states that are close to single photons. As
the envelope width of the pulse increases, so does the
fidelity.
The bounds also have important implications for exper-

imental quantum optics. Ultrashort pulses at the quantum
level are now being generated in a number of schemes. As
technology improves, it appears realistic to approach even
single-cycle single-photon pulses [11]. For ultrashort or
rapidly varying pulses, the bounds are useful for estimating
the best possible realizable single-photon state.
In the Weisskopf-Wigner theory, an initially excited

atom decays to its ground state under the production of
a single photon [12,13] in apparent contradiction to our
results. However, the Weisskopf-Wigner theory is based on
the rotating wave approximation, where antiresonant terms
in the Hamiltonian are neglected. Without this approxima-
tion, the unitary evolution operator given by the Dyson
series also produces small probability amplitudes for more
than one photon.
The rotating wave approximation also destroys causality,

which is usually restored by a second approximation where
the spectral integral is extended to negative frequencies.
Similar approximations were done in the so-called Fermi
problem [14–16], where an initially excited atom couples
via the electromagnetic field to a distant atom initially in the
ground state. These problems are conveniently treated in
the Heisenberg picture. Causality is then seen directly from
the electric field operator, which becomes a superposition
of the source-free operator and a sourced retarded-
field operator [17], in complete analogy with classical
electrodynamics.
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Setup and assumptions.—The setup in our analysis (see
Fig. 1) consists of a plane-wave source, located at x < −cT,
where c is the vacuum light speed and T > 0 is a constant.
For t < −T, the electromagnetic field is assumed to be in
the vacuum state j0i. The source is turned on at t ¼ −T, off
at t ¼ −T=2, and we consider field observables at the
observation point x ¼ 0 after the source is done.
We let EðtÞ always denote the free time evolution of the

E field at the observation point. In the interaction picture,
the E field retains the time dependence of the free theory,
EðtÞ, and the states evolve according to the interaction-
picture time-evolution operatorU. This operator acts on the
total Hilbert space of the electromagnetic field and the
source, leading in general to a mixed optical state.
Alternatively, we can use the Heisenberg picture, in

which the full time evolution is included in the E-field
operator, while the states remain unchanged. As shown in
[17], the E field then takes the form of the free-field part
and a retarded-field part. By causality, for t < 0, the
retarded field cannot yet have reached the observation
point at x ¼ 0, and thus the E field there has the regular,
free-field time dependence EðtÞ. This means that U must
leave EðtÞ unchanged for t < 0,

U†EðtÞU ¼ EðtÞ; t < 0: ð1Þ

Returning to the interaction picture, the optical state
produced by the source is therefore given by applying a
unitary operatorU satisfying (1) to the initial state j0i ⊗ jsi
and then tracing out the source. Here, jsi is some arbitrary
initial state of the source.
In particular, the resulting optical state must therefore for

t < 0 give expectation values of local field observables
equal to that for vacuum. For example, hE2ðtÞi and
h∶E2ðtÞ∶i, where ∶∶ denotes normal order, will equal
the corresponding expectation values for vacuum for
t < 0. By definition [5,18], this means that the state is
strictly localized to the region t ≥ 0. In the Supplemental
Material [19], we give a characterization of which field
observables are local, and we show an alternative argument
for requiring (1) based on physically measurable expect-
ation values.
We consider plane-wave modes in the þx direction with

a single polarization [23], expressing all quantities as a
function of frequency (see, e.g., [24], Ch. 6). The operator
EðtÞ can then be decomposed into its positive- and
negative-frequency parts [24,25],

EðtÞ ¼ EþðtÞ þ E−ðtÞ; ð2Þ

where

EþðtÞ ¼
Z

∞

0

dωEðωÞaðωÞe−iωt ð3Þ

and E−ðtÞ ¼ ½EþðtÞ�†. For later convenience, we write
EðωÞ ¼ K

ffiffiffiffiffiffiffiffiffi
−iω

p
, where K > 0 is a constant, absorbing

the additional phase factor into aðωÞ. Moreover, aðωÞ is the
usual annihilation operator satisfying

½aðωÞ; a†ðω0Þ� ¼ δðω − ω0Þ: ð4Þ

Pulse-mode formalism.—Similar to the treatment in [26],
we introduce a complete, orthonormal set of pulse modes
fξnðωÞgn spanning the function space L2ð0;∞Þ,

Z
∞

0

dωξ�nðωÞξmðωÞ ¼ δnm; ð5aÞ
X
n

ξ�nðωÞξnðω0Þ ¼ δðω − ω0Þ: ð5bÞ

We can then define pulse-mode ladder operators by

a†n ¼
Z

∞

0

dωξnðωÞa†ðωÞ: ð6Þ

From (4) and (5a), they satisfy

½an; a†m� ¼ δnm: ð7Þ

Using the complete set fξnðωÞgn, we can now write

EþðtÞ ¼
X
n

EnðtÞan; ð8Þ

where

EnðtÞ ¼
Z

∞

0

dωEðωÞξnðωÞe−iωt: ð9Þ

As an example, we can calculate the time dependence of
the energy density of a single photon. The energy
density operator minus the vacuum contribution is propor-
tional to

∶E2ðtÞ∶ ¼ EþðtÞ2 þ E−ðtÞ2 þ 2E−ðtÞEþðtÞ: ð10Þ

The expectation value of (10) for a single-photon state
j11i ¼ a†1j0i associated with some pulse mode ξ1ðωÞ is
easily obtained using (7),

h11j∶E2ðtÞ∶j11i ¼ 2jE1ðtÞj2: ð11Þ

FIG. 1. A source is located in the region x < −cT, and we
consider field observables at the observation point x ¼ 0. The
source is turned on at t ¼ −T, which means that the observables
must be unchanged for t < 0.
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According to (9), E1ðtÞ contains only positive frequencies
and is according to the Paley-Wiener criterion [2,3] there-
fore nonzero (almost) everywhere. Since the expectation
value of (10) for vacuum is 0, and since (11) is nonzero for
t < 0, single photons cannot be strictly localized [1,5].
On the other hand, coherent states jα1i ¼ D1ðαÞj0i,

α ∈ C may be strictly localized [1], since the displacement
operator D1ðαÞ ¼ expðαa†1 − α�a1Þ is unitary and [27]

D†
1ðαÞEðtÞD1ðαÞ ¼ EðtÞ þ αE1ðtÞ þ α�E�

1ðtÞ

¼ EðtÞ þ
Z

∞

−∞
dωFðωÞe−iωt; ð12Þ

where

FðωÞ ¼
�
αEðωÞξ1ðωÞ; ω > 0;

α�E�ð−ωÞξ�1ð−ωÞ; ω < 0:
ð13Þ

The expected energy density is

hα1j∶E2ðtÞ∶jα1i ¼
�Z

∞

−∞
dωFðωÞe−iωt

�
2

: ð14Þ

Since the Fourier integral of FðωÞ contains both positive
and negative frequencies, the transformed EðtÞ in (12) can
be made to satisfy (1) by a suitable spectrum ξ1ðωÞ, exactly
as for classical pulses. In particular, there is a family of
spectra that satisfy FðωÞ ¼ F�ð−ωÞ and simultaneously
have vanishing inverse Fourier transforms for t < 0.
Single-photon approximation.—The coherent state is not

close to a single-photon state for any value of the parameter
α. Other localized states have also been suggested in the
context of quantum field theory [5,18]; however, it is
unclear if these can be made close to single-particle states.
We will now consider the possibility of having states that

are strictly localized to t ≥ 0 and yet close to a single
photon. The intuition behind avoiding the infinite tails of
one pulse mode is to compensate the negative-time com-
ponents with small terms of another mode. A condition that
will turn out to be sufficient for achieving this is to find two
pulse modes ξ1ðωÞ and ξ2ðωÞ, such that

E2ðtÞ ¼ −CE�
1ðtÞ; t < 0; ð15Þ

where C is a real constant. Note that the condition is only
supposed to be valid for t < 0. To see how (15) can be
achieved, define

fðtÞ ¼ E1ðtÞ þ E�
2ðtÞ=C: ð16Þ

From (9), we find that

fðtÞ ¼
Z

∞

−∞
dωEðωÞGðωÞe−iωt; ð17Þ

where

GðωÞ ¼
�
ξ1ðωÞ; ω > 0;

ξ�2ð−ωÞ=C; ω < 0:
ð18Þ

To satisfy (15), we must choose GðωÞ such that the inverse
transform fðtÞ vanishes for t < 0 [28]. This function GðωÞ
must necessarily be nonzero for (almost) all ω. Typically,
we pick a function with its main weight for positive
frequencies (see Fig. 2). We then multiply GðωÞ by a real
constant such that its restriction to positive frequencies,
ξ1ðωÞ, is normalized. Finally, ξ2ðωÞ is found from GðωÞ
after determining C such that ξ2ðωÞ also gets normalized.
There is a small complication: we must ensure that the
resulting pulse modes ξ1ðωÞ and ξ2ðωÞ are orthogonal.
In the Supplemental Material [19], it is shown that this
can always be done easily by a very small modification
of GðωÞ, which can be neglected in the following
analysis.
Define η as the fraction of the squared norm of GðωÞ

located for negative frequencies. It follows that

C2 ¼ ð1 − ηÞ=η: ð19Þ

We will now look for a unitary operator U acting on the
source and pulse modes 1 and 2, to create a state that is
localized to t ≥ 0. With condition (15), the electric field
operator for t < 0 can be written as

EðtÞ ¼ E1ðtÞða1 − Ca†2Þ þ
X
n≥3

EnðtÞan þ H:c: ð20Þ

To achieve (1), it is therefore sufficient that

½U; a1 − Ca†2� ¼ 0: ð21Þ

Consider a source Hilbert space with two basis states
jgi; jei and source excitation/deexcitation operators
σþ ¼ jeihgj, σ− ¼ jgihej. Define the unitary operator

US ¼ A†
1σ− þ A1σþ þ j01ih01j ⊗ jgihgj; ð22Þ

with

A†
1 ¼ a†1

1ffiffiffiffiffiffiffiffiffiffi
a1a

†
1

q ¼
X
n

jnþ 11ihn1j; ð23Þ

FIG. 2. The absolute value of a typical GðωÞ.
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where jnki ¼ a†k
nj0ki=

ffiffiffiffiffi
n!

p
. Further, for tanh γ ¼ 1=C,

define

S ¼ eγa1a2−γa
†
1
a†
2 ; ð24Þ

which is also unitary and describes the transformation
[27,29]

Sða1 − Ca†2ÞS† ¼ −a†2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − 1

p
: ð25Þ

Since US commutes with (25), it follows that the unitary
operator U ≡ S†USS satisfies (21). Tracing out the source
space from Uj0i ⊗ jei means that

jη1;2i≡ S†A†
1Sj0i ð26Þ

is a strictly localized state, with the form

jη1;2i ¼ c1j11 02i þ c2j21 12i þ c3j31 22i þ � � � ; ð27Þ

for coefficients c1; c2;… In practice, we will often have
η ≪ 1, and we can then find the fidelity between jη1;2i and
the single-photon state j11 02i by (19) and expanding (26)
for small η,

F≡ jh11 02jη1;2ij ¼ 1 −
3 − 2

ffiffiffi
2

p

2
ηþOðη2Þ ≈ 1 − 0.09η:

ð28Þ

We have arrived at the first of our two main results.
Equation (26) expresses a strictly localized state that is
close to a single photon as measured by the fidelity (28).
For this state, the expectation value of any local observable
is for t < 0 the same as that for vacuum.
Additionally, instead of restricting the pulse to t ≥ 0, we

can just as easily choose 0 ≤ t ≤ T , for some constant
T > 0. Using the same procedure, we can then find a state
that is strictly localized to a bounded interval [28] while
being close to a single photon. In particular, its energy
density will be equal to that for vacuum everywhere outside
this interval.
Bounds.—Finally, we aim to find inequalities that

constrain how close to a desired optical state we can
come with a strictly localized state. One possible choice
for the desired state is simply a single photon with
spectrum ξðωÞ. Such a state will however necessarily
give a tail for negative t and is therefore not always the
most suitable representation of the desired photon pulse
form. We therefore consider the desired state to instead be
a single photon in some specified, positive-time pulse
gðtÞ,

j1gi ¼
Z

∞

0

dtgðtÞa†ðtÞj0i;
Z

∞

0

dtjgðtÞj2 ¼ 1; ð29Þ

where gðtÞ ¼ 0 for t < 0. Here, a†ðtÞ is a time-domain
creation operator satisfying ½aðtÞ; a†ðt0Þ� ¼ δðt − t0Þ [24].
At the same time, a†ðtÞ is the Fourier transform of a†ðωÞ,
and the required negative-frequency modes must be seen
as an artificial construction to be able to express the
desired state. Provided we extend EðtÞ with these negative
frequencies as well, j1gi is an artificial, single-photon state
that is localized to t ≥ 0.
Any physical state jψi contains a superposition of

(products of) ladder operators a†ðωÞ only for ω > 0, acting
on the vacuum state. Therefore, the maximum fidelity
satisfies

Fmax ≡max
jψi

jhψ j1gij ¼ max
jψi

����hψ j
Z

∞

0

dωGðωÞa†ðωÞj0i
����;
ð30Þ

where GðωÞ is the Fourier transform of gðtÞ. Using the
Cauchy-Schwarz inequality, we obtain an upper bound

F2
max ≤

Z
∞

0

dωjGðωÞj2 ¼ 1 − η: ð31Þ

A lower bound for Fmax can now be found by con-
struction, using the results above. Given a desired state
(29), we first define a corresponding single-photon state
with only positive frequencies,

j1þg i ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
Z

∞

0

dωGðωÞa†ðωÞj0i: ð32Þ

By the identification (18), the state j1þg i plays the role
of j11 02i in (28). Thus, we can approximate j1þg i
by a localized state jη1;2i, with fidelity F ¼ jh1þg jη1;2ij≈
1 − 0.09η. This gives

Fmax≥ jh1gjη1;2ij¼ jh1gj1þg ih1þg jη1;2ij¼
ffiffiffiffiffiffiffiffiffi
1−η

p
F: ð33Þ

We conclude that

1−0.59η≈F
ffiffiffiffiffiffiffiffiffi
1−η

p
≤Fmax≤

ffiffiffiffiffiffiffiffiffi
1−η

p
≈1−0.5η; ð34Þ

where the approximations are valid for η ≪ 1. The bounds
(34) represent our second main result, constraining the
fidelity between states generated locally on demand, and a
desired single photon in a given pulse gðtÞ.
It is clear that the bounds also apply to mixed states

ρ ¼ P
i pijψ iihψ ij, where pi are probabilities and jψ ii

are corresponding states. The fidelity is then given
by F2

max ¼ maxρh1gjρj1gi ¼ maxjψijhψ j1gij2.
Similarly, if the source is operated with postselection, the

upper bound for Fmax is still valid because of the artificial
negative frequencies of the desired state (29). The lower
bound is on the other hand not valid, since we in light of the
Reeh-Schlieder theorem [18,30,31] can approximate a
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single-photon state (32) arbitrarily well by a selective local
operation. The lower bound is therefore simply equal to the
upper bound, however, with the caveat that any given trial
has a limited probability of being postselected.
As an example, consider a target pulse that is a truncated

Gaussian with carrier frequency ω0, duration σ, and delay τ,

gðtÞ ∝ uðtÞe−ðt−τÞ2=2σ2e−iω0t; ð35Þ

where uðtÞ is the Heaviside function. Truncation of the
leading tail is required [32] because causality necessitates
gðtÞ ¼ 0 for t < 0 from (29). By calculating the spectrum,
one finds η and the values for the bounds (34) (see Fig. 3).
Clearly, the fidelity is much higher than that with a coherent
state. For single-cycle pulses, ω0σ ≲ 1, the fidelity is low
since the pulse contains a significant amount of negative
frequencies, giving a large η. As ω0σ increases, the fidelity
increases rapidly up to a point where the truncation
dominates the negative-frequency content and the fidelity
remains roughly constant. By increasing the pulse delay τ,
there is less truncation and the fidelity can be made
arbitrarily close to 1 by a sufficiently large σ.
We can also consider the limiting case of a Gaussian

pulse without truncation by taking ω0τ → ∞, correspond-
ing to delaying the pulse infinitely long. This case can be
treated analytically, giving

η ¼ 1

2
½1 − erfðω0σÞ�; ð36Þ

where erfð·Þ is the error function. The result is practically
indistinguishable from the case τ ¼ 3σ (corresponding to a

large, finite delay) in Fig. 3. This regime is a good
approximation for most on-demand single-photon sources
today, where we typically have an externally pumped
system that emits a photon by relaxation [33,34]. The
delay ω0τ is usually large, either from a long spontaneous
emission time or from the time taken for triggering a
controlled emission. However, if such devices can be
operated with very short pulse times ω0σ, Eq. (36) shows
that the fidelity is still limited even for arbitrarily long
relaxation times. We emphasize that the bounds for the
fidelity are a fundamental consequence of the field itself
and are therefore valid for all possible sources.
In conclusion, we have constrained the optimal fidelity

of locally generated optical states that approximate single-
photon pulses. Perfect single photons are in principle
unrealizable on demand, but the optimal fidelity increases
rapidly as the pulse envelope becomes more slowly vary-
ing. In addition to implications for ultrafast optics, our
results demonstrate optical states that are strictly localized
yet close to single photons.

We thank Jon Magne Leinaas and Joakim Bergli for
helpful suggestions and comments.
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