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We provide gauge/gravity dual descriptions of explicit realizations of the strong coupling sector of
composite Higgs models using insights from nonconformal examples of the AdS/CFT correspondence. We
calculate particle masses and pion decay constants for proposed Sp(4) and SU(4) gauge theories, where
there is the best lattice data for comparison. Our results compare favorably to lattice studies and go beyond
those due to a greater flexibility in choosing the fermion content. That content changes the running
dynamics and its choice can lead to sizable changes in the bound state masses. We describe top partners by
a dual fermionic field in the bulk. Including suitable higher dimension operators can ensure a top mass
consistent with the standard model.
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Extensions of the AdS/CFT correspondence [1–3] to less
symmetric gauge/gravity duals have proved powerful in
describing strongly coupled gauge theories. Adding probe
branes allows quarks in the fundamental representation of
the gauge group to be introduced [4] and to study the
related meson operators [5,6]. These methods were suc-
cessfully used to obtain gravity duals of chiral symmetry
breaking (χSB) and pseudo-Goldstone bosons in confining
non-Abelian gauge theories [7,8]. A natural extension is to
apply this approach to other strongly coupled theories in the
context of particle physics. Our attention here is on
composite Higgs models (CHM) of beyond the standard
model physics, as reviewed in [9,10].
The key element of CHM is a strongly coupled gauge

theory, like QCD, causing χSB in the fermion sector and
generating four or more Nambu-Goldstone bosons, or
“pions” [11]. By weakly gauging the global chiral sym-
metries, four then pseudo-Nambu Goldstone bosons
(PNGBs) can be placed in a doublet of SUð2ÞL to become
the complex Higgs field. The composite nature of the Higgs
removes the huge level of fine tuning in the standard model
(SM) hierarchy problem. This strong dynamics would
occur at a scale of 1–5 TeV, the expected scale for bound
states. The LHC has started and, in future runs, will
continue to search for such states.
There is some lattice gauge theory work on CHMs

[12–16]. It is limited, though, by the cost of numerics and

the inability to unquench fields (i.e., to include the effect
of flavor modes on the gauge fields) and to match the
models’ precise fermion content. Here, we use non-
conformal gauge/gravity models that explicitly include
the gauge theories’ dynamics through the running of the
anomalous dimension γ of the fermion or “quark” mass in
the CHM. Our models are inspired by top-down models
involving probe D-branes embedded into ten-dimensional
supergravity—we retain as much of the Dirac-Born-Infeld
structure as we can in our models to correctly capture the
true AdS/CFT dynamics. However, we combine this with a
phenomenological approach and insert sensible guesses for
the running of γ based on perturbation theory. We then
predict some of the mesonic and baryonic spectrum of the
theory. These top-down inspired holographic models
describe the running dynamics of the specific CHM rather
than the more generic previous analyses, e.g., the Randall-
Sundrum [17] approach of [18,19].
We consider two models: an Sp(4) theory with four

fundamental and six sextet Weyl quarks [20]; and an SU(4)
theory with five sextet Weyl and three fundamental Dirac
quarks [21,22]. Both models can incorporate a SM Higgs
among their PNGBs. We present results for the mass
spectrum of bound states analogous to mesons in these
theories and compare to relevant lattice results: for the Sp
(4) theory, lattice results were obtained for the quenched
theory; for the SU(4) theory, they have a slightly different
fermion content with an even number of multiplets. The
pattern of masses is well reproduced by the holographic
model, although precise values can differ by up to 20%.
This gives us confidence to trust our predictions for how the
masses change as we unquench, including the effect of
flavors on the running coupling, and move to the true
fermion content of the models. In particular, unquenching
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tends to separate the scales of the sextet and fundamental
matter mesons. Slowing the running also reduces the scalar
meson masses [23].
Finally, we address the generation of the top quark’s

large mass in CHMs, while also keeping flavor changing
neutral currents under control. This can be achieved by the
mechanism of partial compositeness [24] to generate the
top-Higgs Yukawa coupling with higher dimension
operators (HDOs) from a flavor scale above the strong
dynamics scale. These CHM use a mechanism where the
left tL and right handed tR top quarks mix with baryonlike
“top partner” spin 1=2 states TL, TR in the gauge theory
with the same quantum numbers [24]. The top partners are
involved in the strong dynamics and so have an order one
Yukawa coupling to the Higgs. HDOs then mix the top and
top-partner fields to generate the top Yukawa coupling. To
achieve the large top mass though requires top partner
masses of the order of 800 GeV, which is below the natural
baryon mass scale and not consistent with current LHC data
[25–27].
We address this issue by first including a spinor of

appropriate AdS mass into the holographic model, dual to
the top partner operator in the field theory. This allows us to
calculate the top partners’mass. A novel technical ingredient
in this respect is the inclusion of spinor fields into a
nonsupersymmetric bulk theory, for which we adapt pre-
vious results for supersymmetric probe branes [29]. We also
add appropriate strongly coupled HDOs to the holographic
model using Witten’s double trace prescription [30]. The
particular HDOwe pick reduces to a shift in the top partners’
mass at low energies. We show that the top Yukawa coupling
can be made of order one by lowering the top partners’mass
to roughly half the CHM’s vector meson mass. This is
plausibly reconcilable with experimental constraints.
Dynamic AdS/YM.—Our holographic model [31] is

based on the Dirac-Born-Infeld action of a top-down model
with a D7-brane embedded in a (deformed) AdS5 geometry.
The deformation is expanded to quadratic order in the
embedding function X (see [32,33]). We add an axial gauge
field as in AdS/QCD models [34,35] and a spinor. The
model describes either a single quark in the background of
the gauge fields and other quarks; or, by placing the fields
in the adjoint of flavor and tracing over the action, multiple
mass-degenerate quarks. The vacuum X function will cause
a global symmetry breaking pattern G → H.
The model has a dimension one field for each gauge

invariant operator of dimension three in the field theory.
X ¼ Leiπ is dual to the complex quark bilinear or any other
suitable bilinear operator, depending on the group and
representation considered. This field’s fluctuations are dual
to the analog of the scalar and pseudoscalar σ and π mesons
of the theory. Aμ

L and Aμ
R are dual to the analogs of the

vector and axial vector mesons V and A.
The gravity action of dynamic AdS/YM is, including

also a spinor field [36],

S ¼
Z

d5xρ3
�
1

r2
jDXj2 þ Δm2

ρ2
jXj2

þ 1

2g25
½FL;MNFMN

L þ ðL ↔ RÞ�

þ Ψ̄ð=DAAdS −mÞΨ
�
: ð1Þ

The five-dimensional coupling is obtained by matching to
the UV vector-vector correlator, g25 ¼ f48π2=½dðRÞNfðRÞ�g
[34]. dðRÞ is the dimension of the quark’s representation and
NfðRÞ is the number of Weyl flavors in that representation.
The model lives in a five-dimensional asymptotically AdS
(AAdS) spacetime

ds2 ¼ r2dx2ð1;3Þ þ
dρ2

r2
; ð2Þ

with r2 ¼ ρ2 þ L2 the holographic radial direction, corre-
sponding to the energy scale, and dx2ð1;3Þ a four-dimensional
Minkowski spacetime. The ρ and L factors in the action and
metric are implemented directly from the top-down analysis
of theD3/probe-D7 system. They ensure an appropriate UV
behavior. In the IR, the fluctuations know about any χSB
through L ≠ 0.
The dynamics of a particular gauge theory, including

quark contributions to any running coupling, is included
throughΔm2 in Eq. (1). To find the theory’s vacuum, with a
nonzero chiral condensate, we set all fields to zero except
for LðρÞ. For Δm2 a constant, the equation of motion
obtained from Eq. (1) is

∂ρðρ3∂ρLÞ − ρΔm2L ¼ 0: ð3Þ

The solution takes the form LðρÞ ¼ mρ−γ þ cργ−2, with
Δm2 ¼ γðγ − 2Þ in units of the inverse AdS radius squared.
Here, γ is the anomalous dimension of the quark mass. The
Breitenlohner-Freedman bound [37], below which an
instability to χSB occurs, is given by Δm2 ¼ −1.
We impose a particular gauge theory’s dynamics by using

its running γ to determine Δm2—as usual in holography,
M2 ¼ ΔðΔ − 4Þ, withΔ the operator scaling dimension. For
γ < 1, we find Δm2 ¼ −2γ, thus a theory triggers χSB if γ
passes through 1=2. Since the true running of γ is not
known nonperturbatively, we extend the perturbative results
as a function of renormalization group scale to the non-
perturbative regime. To find the running of γ, we use the
perturbative results. To provide some understanding of
error range in the holographic model, we compute with
both the one-loop result γ1l ¼ f½3C2ðRÞ�=2πgα and the
two-loop result γ2l ¼ ðα=2π2Þ½3

2
C2ðRÞ2 þ 97

6
C2ðRÞC2ðGÞ−

ð10Nf=3ÞC2ðRÞTðRÞ� with a running α [38]. Note that we
decouple fields from the running as they go on mass shell.
We average the results and use half the range as the error.
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We numerically solve (3) with our ansatz for Δm2,
using the IR boundary conditions Lðρ ¼ ρIRÞ ¼ ρIR,∂ρLðρ ¼ ρIRÞ ¼ 0. They are imported from the D3=D7
system but imposed at the scale where the quarks go on
mass shell. The spectrum is determined by considering
fluctuations in all fields of (1) about the vacuum [31]—
see Supplemental Material [40] for details.
Wewill use this model to explore two gauge theories that

have been proposed to underlie CHM—we pick the two
with the most extensive lattice data. We denote models by
their gauge group and the number of Weyl flavors in
the fundamental (F), and two-index antisymmetric (A2)
representations.
Sp(4) gauge theory—Spð4Þ4F; 6A2.—This CHM,

proposed in [20], has top partners. Lattice studies related
to this model were performed in [12,13]. The fundamental
of Spð2NÞ is pseudoreal, hence the SUð2ÞL × SUð2ÞR
symmetry of a model with four Weyl quarks in the
fundamental representation is enhanced to an SU(4) flavor
symmetry [41]. The condensation pattern is the same as in
QCD, and breaks the G ¼ SUð4Þ flavor symmetry to H ¼
Spð4Þ with 5 PNGBs.
The top partners are introduced by including three

additional Dirac fermions in the A2 representation of the
gauge group for N > 1. It is natural to concentrate on the
minimal, Sp(4), gauge group case. The top partners are
FA2F bound states. From the point of view of the Sp(4)
dynamics, there is an G ¼ SUð6Þ symmetry on the six A2

Weyl fermions that are in a real representation. The A2

condensate breaks this symmetry to H ¼ SOð6Þ.
The A2 fermions condense ahead of the fundamental

fields, since the critical value for α where γ ¼ 1=2
is smaller (at the level of the approximations we use
the critical couplings are αA2

c ¼ π=6 ¼ 0.53, αFc ¼
4π=15 ¼ 0.84).
We perform the AdS/YM analysis for the two fermion

sectors separately, although they are linked since both
flavors contribute to the running of γ down to their IR mass
scale. We find the LðρÞ functions for the A2 and F sectors.
We fluctuate around each embedding separately to find the
spectrum (neglecting any mixing). We present the holo-
graphically computed spectrum in Table I. The errors show
the range in using γ1l or γ2l and are mostly small. The scalar
masses are dependent on the strength of the running and so
have the largest errors.
Lattice data exist for the quenched theory [12]. To

compare, we provide holographic results for the quenched
case—here no fermions contribute to the running. The V
meson masses fit the lattice data well. For the Amesons, the
holographic model predicts close to degeneracy between
the F and A2 sectors, while the lattice has a wider spread
(although with large errors on the spread) and a 20% higher
estimate of the scale. The holographic pion decay constants
are low by 20%–30%. The lattice results are for the a0
masses, not for the σ, but we include these data points for

comparison. Overall, the success in the pattern suffices to
make us trust changes as the theory is unquenched.
Particularly, the gap between quantities in the A2 and F
sectors grow by 10%–20% as the running between the
condensation scales slows due to the A2 being integrated
out, and the scalar masses fall as the running slows. There
are unquenched lattice results but only for the F sector [13],
so they do not shed light on the mass gap between the
sectors or the dependence of the σ mass.
SU(4) gauge theory—SU(4) 3F, 3F̄, 5A2.—We report

on a second model [21,22], for which there has also been
related lattice work. The gauge group is SU(4). There are
five Weyl fields in the A2 representation. When these A2

condense they break their G ¼ SUð5Þ symmetry to
H ¼ SOð5Þ—the PNGBs include the Higgs. To include
top partner baryons, fermions in the fundamental are added,
allowing FA2F states. The number of flavors is fixed to be
three Dirac spinors, since we need to be able to weakly
gauge the flavor symmetry to become the SU(3) of QCD.
When these fields condense, the chiral G ¼ SUð3ÞL ×
SUð3ÞR symmetry is broken to the vector H ¼ SUð3Þ
subgroup. Note that this model is hard to simulate on
the lattice due to the fermion doubling problem, so instead
lattice work [14,15] has focused on the case with just two
Dirac A2s and two fundamentals, which allows consider-
ation of the unquenched case.
We display our holographic results in (II) with lattice

data from [14]. The holographic approach and the lattice
agree in the V sector and the pion decay constants lie close
to or just below the lower lattice error bar. We obtain
additional masses that have not been computed on the
lattice. Crucially, we move to the 5A2, 3F, 3F̄ fermion

TABLE I. AdS=Spð4Þ4F; 6A2. Ground state masses for the
vector, axial-vector, and scalar mesons for the two representa-
tions, F and A2, from holography (errors show the range in using
γ1l and γ2l) and the lattice. Also the pion decay constant and two
estimates of the top partner baryon mass. We have rescaled the
lattice data to theMVA2

mass in the quenched case [42] and for the
unquenched case, where no A2 states are included, rescaled so
MVF matches the quenched case for comparison.

AdS/Sp(4) AdS/Sp(4) Lattice [12] Lattice [13]

unquench quench quench unquench

fπA2
0.118 (02) 0.104 (02) 0.1453 (12)

fπF 0.068 (02) 0.074 (02) 0.1079 (52) 0.1018 (83)
MVA2

1� 1� 1.000 (32)
MVF 0.783 (31) 0.92 (04) 0.83 (19) 0.83 (27)
MAA2

1.35 (01) 1.29 (02) 1.75 (13)
MAF 1.16 (03) 1.32 (04) 1.32 (18) 1.34 (14)
MSA2

0.37 (01) 0.98 (16) 1.65 (15) a

MSF 0.77 (13) 1.10 (15) 1.52 (11) a 1.40 (19) a

MTA2
1.85 (01) 1.85 (05)

MTF 1.46 (07) 1.71 (08)
aNote the lattice scalar results are for the a0, not for the σ we
compute in the holographic model.
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content by adding in the additional fields needed for the
CHM of [21,22]. We see that the extra fermions slow
the running between the A2 and F mass scales, reducing the
F sector masses by 10%. The scalar masses again fall (by
20%) in response to the slower running.
Top partners.—Top partners in both models we consider

are FA2F states, spin-1=2 baryons of the strong dynamics.
We describe them by a spinor fluctuating in AdS [43], dual
to the baryon operator. From (1), we derive a second order
wave equation for the spinor, given in [44], based on [29].
The main features are the following: states with Δ ¼ 9=2,
appropriate for three-quark states, have an AdS mass
m ¼ 5=2. The spinor can be written as eigenstates of the
γρ projector, with γρψ� ¼ �ψ�. The equation then splits
into two copies of the dynamics (for ψþ and for ψ−) with
explicit relations between the solutions [29]. One can solve
one equation and from the UV behavior extract the source
J and operator O values. See Supplemental Material [40]
for further details.
This allows the baryon masses’ computation for three-

fermion states associated with a particular background
LðρÞ. Here, we wish to set O ¼ FA2F. However, since
it is a mixed state in principle the computation should
take into account that the A2 and F states have distinct
LðρÞ. We simplify this by using one LðρÞ, either that for F
or A2, which assumes the flavors are degenerate—the two
choices give predictions for the baryon masses, MTA2

and
MTF at the bottom of Tables I and II. We expect the mass to
lie between these two computations. There is only lattice
data for the SU(4) model for the top partner—our estimate
is 25% high, but sets a sensible figure from which to
observe changes as we include HDOs.
The top mass itself is generated in CHM by the diagram

in Fig. 1. The Z factors are structure functions that depend
on the strong dynamics. g2=Λ2 and the tilded factors on the
second vertex in Fig. 1, which we will not distinguish
henceforth, are the dimensionful couplings of the HDOs
that mix the top and top partners of the form t̄L=RO.

On dimensional grounds, a sensible holographic estimate
for the Z3 factor is a weighted integral over the PNGB and
baryon wave functions [45],

Z3 ≃
Z

dρρ3
∂ρπψ

2
B

ðρ2 þ L2Þ2 : ð4Þ

A similar contributing term to the Z and Z̃ factors is

Z ≃ Z̃ ≃
Z

dρρ3∂ρψB: ð5Þ

π and ψB are ρ dependent holographic wave functions for
the PNGB and baryon, respectively. The Z factor was
computed on the lattice in [16]—for QCD it is expected that
Z ≃ 19f3π and we find Z ¼ 22.6f3π . For the SU(4) lattice
variant, Z ≃ 7.5f3π is found, and we find Z ¼ 7.0f3π show-
ing that our estimate is sensible.
We have then computed yt from the full set of factors in

Fig. 1 in both CH models. If we set a cutoff for the HDOs
roughly 6 times the vector meson mass, we find the top
Yukawa coupling is only of order 0.01, far below the
needed value of 1. This is the standard problem when trying
to generate the top mass—it is suppressed both by the HDO
scale Λ and top partner mass squared.
Our new solution to this is to enhance yt by including a

further HDO given by

LHDO ¼ g2T
Λ5

jFA2Fj2: ð6Þ

As the operator FA2F becomes the top partner, this is
directly a shift in its mass. To include this holographically,
we use Witten’s double trace prescription [30], according to
which the vacuum expectation value hFA2Fi contributes to
the source via J ¼ ðg2T=Λ5ÞhFA2Fi once (6) is turned on.
From the asymptotic boundary behavior of the gravity
solutions, we read off J andO and then compute gT . From
these results we can find the masses of the top partner for a
particular gT.
The HDO (6) can indeed be used to reduce the top

partner’s mass as was shown in a more formal setting [29]
—for small gT the effect is linear and small, but after a
critical value the effect is much larger. The same conclusion

TABLE II. SU(4) theories—the spectrum in two scenarios and
lattice data for comparison.

Lattice SU(4) [14] AdS/SU(4) AdS/SU(4)

4A2, 2F, 2F̄ 4A2, 2F, 2F̄ 5A2, 3F, 3F̄

fπA2
0.15 (4) 0.105 (06) 0.111 (01)

fπF 0.11 (2) 0.094 (01) 0.108 (01)
MVA2

1.00 (4) 1� 1�
MVF 0.93 (7) 0.91 (03) 0.88 (02)
MAA2

1.38 (01) 1.33 (01)
MAF 1.35 (02) 1.21 (02)
MSA2

0.746 (13) 0.61 (08)
MSF 0.829 (19) 0.66 (01)
MTA2

1.4 (1) 1.85 (01) 1.84 (01)
MTF 1.4 (1) 1.69 (06) 1.63 (05)

FIG. 1. The top Yukawa coupling (yt) vertex diagram.
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was reached in a simple bottom-up model for the scalar
mode as well [46]. In the two models above, using either of
the baryon mass’ estimates, one can reduce the top mass to
half the V meson mass (which is likely 0.5 TeVor above in
CHM) for 7 < gT < 10.
Caution is needed in computing the top Yukawa. As the

top partner’s mass changes, so do the Z factors in (4) and
(5). In particular, the HDO in (6) plays a large role since it
induces a sizable nonnormalizable piece in the UV holo-
graphic wave function of the top partner. The integrals in
the normalization factors for the state, which enter directly
in the expressions for the Z factors, are more dominated by
the UV part of the integral. The overlap between different
states can also change substantially. We therefore plot an
example of the full expression for the Yukawa coupling
from Fig. 1 against the top partner mass (which changes
with gT) in Fig. 2. We see that the top Yukawa grows as the
top partner’s mass falls and can become of order 1 as the
top partners mass falls to about half of the vector meson
mass. This suggests one might be able to realize a
phenomenological viable top partner mass of 1 TeV or
so and the required top mass.
To conclude, we have shown that gauge/gravity duality

methods are a powerful tool for obtaining sensible esti-
mates in strongly coupled theories relevant to CHM, and
are thus a resource for model builders. The AdS/YM theory
presented is fast to compute with. The fermion content can
be changed in a simple way to obtain further models. Our
results for CHM (and a much wider set of models that can
be found in [44]) suggest how the spectrum will change as
lattice simulations are unquenched to the correct flavor
content and HDOs introduced.
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