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We explore nonadiabatic quantum phase transitions in an Ising spin chain with a linearly time-dependent
transverse field and two different spins per unit cell. Such a spin system passes through critical points with
gapless excitations, which support nonadiabatic transitions. Nevertheless, we find that the excitations on
one of the chain sublattices are suppressed in the nearly adiabatic regime exponentially. Thus, we reveal a
coherent mechanism to induce exponentially large density separation for different quasiparticles.
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The separation of two slightly different types of particles
is often encountered in both applied and fundamental
research. One example is the apparent asymmetry between
matter and antimatter in our Universe. Observations prove
that the symmetry between matter and antimatter was
broken, presumably early on in the history of the
Universe. However, it is still unclear how the subtle CP
symmetry violation could lead to the large observed
differences at the cosmological scale [1], although it is
known that, when the characteristic asymmetry energy
scale is very small, the large density difference has to be
produced during a nonequilibrium process [2].
The goal of this Letter is to introduce a mechanism for

controlling different quasiparticles separately using expo-
nential sensitivity of quantum nonadiabatic transitions to
symmetry-breaking interactions. Namely, when parameters
of a quantum system change with time adiabatically, the
system remains in the instantaneous eigenstate, e.g., the
ground state. However, the Kibble-Zurek mechanism [3–11]
predicts that the number of nonadiabatic excitations is not
suppressed exponentially if a macroscopic system passes
through a quantum critical point at which the energy gap to
excitations closes. Without an asymmetry of interactions,
different particle species would pass through the same phase
transition simultaneously. However, even a small asymmetry
generally opens the gap to certain excitation types, even
though the critical point is not destroyed. Thus, we can
harvest the excitations of one type and suppress the others.
A broadly known quantum example that confirms the

Kibble-Zurek mechanism is the model of a uniform Ising
spin chain in a transverse magnetic field [12–14], with the
Hamiltonian

Ĥu ¼
XN
n¼1

½Bσ̂zn þ Jσ̂xnσ̂xnþ1�; B ¼ −βt; ð1Þ

where σ̂x;zn are Pauli operators for the nth spin, J is the spin-
spin coupling, and B is the transverse time-dependent field

that changes with rate β > 0. This model has two Dirac
points at B ¼ �J, at which its spectral gaps close and
which mark boundaries between three phases. The phase
with strong quantum correlations (Fig. 1, top) contains the

FIG. 1. Top: phase diagram of Ising chain (1) in a transverse
magnetic field. Dashed horizontal lines mark the critical points
with the spectral gap closings. At B ¼ �∞, the ground state is
fully spin polarized along the z axis, whereas at B ¼ 0 the ground
state is a superposition of x-polarized spin states. Bottom: spin
chain model (5) with broken chiral symmetry. We consider the
case of b1 > b2. In the adiabatic limit, the initial spin-polarized
ground state (top) at t ¼ −∞ transfers to the spin-polarized state
at t ¼ þ∞ with all spins flipped. The nonadiabatic excitations
(nonflipped spins) on the odd-site sublattice (red) are suppressed
as a power law (31), respecting the Kibble-Zurek mechanism. In
contrast, nonadiabatic excitations on the even-site sublattice
(blue) are suppressed exponentially (25).
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point B ¼ 0 with two degenerate ground states:

j →→ � � � →→i and j ←← � � � ←←i: ð2Þ

For BðtÞ ¼ −βt, the model is exactly solvable [12]. If the
system starts from the fully polarized ground state

j↓↓↓↓…↓↓i ð3Þ

as t → −∞, then in the thermodynamic limit of this
solution, after the passage through a critical point, the
number of nonadiabatic excitations follows a power law:

ρ ∼ J−1β1=2: ð4Þ

Let us now explore robustness of the Ising model
predictions by considering a spin chain whose unit cell
contains two different spins, with the Hamiltonian

Ĥ ¼
XN
n¼1

�
−
b1t
2

σ̂z2n −
b2t
2

σ̂z2nþ1

�

þ
XN
n¼1

½J1σ̂x2nσ̂x2nþ1 þ J2σ̂x2nþ1σ̂
x
2nþ2�: ð5Þ

The difference between b1 and b2 is due to different spin g
factors, and J1 ≠ J2 reflects the lack of inversion symmetry
at zero field. A periodic boundary condition is imposed.
Figure 1 (bottom) illustrates the structure of this spin chain.
Without loss of generality, here and in what follows, we

assume b1 > b2; namely, the spins on the even-site sub-
lattice have a larger g factor than those on the odd sites. We
note that, for weak symmetry breaking, jJ1 − J2j ≪ jJ1 þ
J2j and jb1 − b2j ≪ jb1 þ b2j, the ground state polariza-
tions at B ¼ 0;�∞ are the same for spins with odd and
even indices, and the spin excitations on different sub-
lattices then resemble particles of two slightly different
types of matter.
Via the Jordan-Wigner transformation, Hamiltonian (5)

reduces toaquadratic formoffermionicoperators, ĉand d̂, on
the even andodd sites, respectively. The details are presented
in Appendix A of Supplemental Material [15]. Thus,

σ̂z2n ¼ 1 − 2ĉ†nĉn; σ̂z2nþ1 ¼ 1 − 2d̂†nd̂n: ð6Þ

It is convenient to work with the Fourier transformed
operators

ĉp ¼ 1ffiffiffiffi
N

p
XN
n¼1

ĉne−ipn; ĉ†p ¼ 1ffiffiffiffi
N

p
XN
n¼1

ĉ†neipn; ð7Þ

and similarly defined d̂p and d̂†p. We will assume that N is
even, so the momentum takes discrete values
p ¼ �ð2k − 1Þπ=N,k ¼ 1;…; N=2.Hamiltonian(5) then is

Ĥ ¼
X
p>0

â†pHpâp; ð8Þ

where âp and Hp are given by, respectively,

âp ≡

0
BBB@

ĉp

ĉ†−p

d̂p

d̂†−p

1
CCCA; Hp ≡

0
BBB@

b1t 0 g γ

0 −b1t −γ −g
g� −γ� b2t 0

γ� −g� 0 −b2t

1
CCCA;

ð9Þ
with the couplings

g≡ J1 þ J2e−ip; γ ≡ J1 − J2e−ip: ð10Þ
In theHeisenbergpicture, theevolutionof âp isdescribedbya
Schrödinger-like equation:

iâpðtÞ ¼ HpðtÞâpðtÞ; ð11Þ
and the initial ground state (3) corresponds to the initially
fully filled Fermi sea, for all fermions as t → −∞.
In Fig. 2, we show the time-dependent eigenvalues of the

matrixHp forabrokenchiral symmetry:J1 ≠ J2 andb1 > b2.
Figure 2(a) shows that at p ¼ 0 two of the four energy levels
experience exact level crossings, whereas Fig. 2(b) illustrates
that this degeneracy is lifted for nonzero p. This means
that the chiral asymmetry does not destroy the Dirac
points in the spectrum, which must produce a power-law
density of excitations according to the Kibble-Zurek
mechanism.
We will consider the evolution with the Hamiltonian (5)

during the time interval t ∈ ð−∞;þ∞Þ. In terms of the
phase diagram in Fig. 1, this means that the system passes

FIG. 2. The time-dependent spectrum of the HamiltonianHpðtÞ
from Eq. (9). (a) Two exact level crossing points appear at p ¼ 0.
(b) At finite p, which is here p ¼ 0.3, small gaps open up near
places of the former crossing points. Other parameters are b1 ¼ 2,
b2 ¼ 1, J1 ¼ 3, and J2 ¼ 1 in both figures. The numbers 1–4 in
(a) mark the diagonal elements of Hp, with which the corre-
sponding eigenenergies merge as t → �∞, e.g., 1 is for ðHpÞ11.
The dashed blue and green arrows in (b) show two semiclassical
trajectories that contribute to the amplitude S33. Each trajectory
jumps through one of the gaps but avoids the other gap.
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through two phase transition points. In the adiabatic limit,
the initial ground state (3) transfers, as t → þ∞, into the
ground state with all spins up

j↑↑↑↑…↑↑i: ð12Þ
This is the fermionic vacuum, and the free fermions are the
elementary excitations. The numbers of excitations (non-
flipped spins) on the even and odd sublattices at the end of
the protocol are given by, respectively,

Ne
ex ≡

XN
n¼1

hĉ†nĉni ¼
XN
p

hĉ†pĉpi; ð13Þ

No
ex ≡

XN
n¼1

hd̂†nd̂ni ¼
XN
p

hd̂†pd̂pi; ð14Þ

where, in the Schrödinger picture, the averaging is taken
over the state at t ¼ þ∞.
The Hamiltonian (9) has the form of a multistate Landau-

Zener (MLZ) model, i.e., can be written as HðtÞ ¼ Aþ Bt
with Hermitian matrices A and B. The MLZ models have
been extensively studied previously [16–18]. Our case with
J1 ≠ J2 is generally not solvable [19], but the MLZ theory
provides exact formulas for some of the evolution matrix
elements [20], which we will utilize.
Let us define the S matrix

S ¼ SðpÞ≡ UpðT;−TÞT→∞; ð15Þ

where UpðT;−TÞ is the evolution matrix over the time
interval t ∈ ð−T; TÞ with the Hamiltonian Hp. We can say
that the operators at t ¼ �∞ are related by

âpðþ∞Þ ¼ Sâp; ð16Þ

where âp ≡ âpð−∞Þ. Hence,

ĉpðþ∞Þ ¼ S11ĉp þ S12ĉ
†
−p þ S13d̂p þ S14d̂

†
−p;

ĉ†pðþ∞Þ ¼ S�11ĉ
†
p þ S�12ĉ−p þ S�13d̂

†
p þ S�14d̂−p: ð17Þ

The number of excitations (13) can be evaluated in the
Heisenberg picture, i.e., taking the average of the operators
at t ¼ þ∞ with respect to the initial state (3):

Ne
exðþ∞Þ ¼

X
p

ðjS11j2 þ jS13j2Þ: ð18Þ

The survival amplitudes for states with the highest-
energy level slopes are known exactly for any MLZ model
[16]:

S11 ¼ S22 ¼ e−πjgj2=ðb1−b2Þ−πjγj2=ðb1þb2Þ: ð19Þ

Another exact relation of MLZ theory is for the transition
amplitudes between the levels with the two highest slopes
[20]:

S11S33 þ jS13j2 ¼ e−2πjγj2=ðb1þb2Þ: ð20Þ

This does not fix S13 because S33 is not known. Fortunately,
model (9) has discrete symmetries leading to

S11 þ S22 ¼ S33 þ S44;

S33ð−pÞ ¼ S44ðpÞ; ð21Þ

the derivations of which are given in Appendix B of
Supplemental Material [15]. Equations (19)–(21) then
predict

X
p

jS13j2 ¼
X
p

½e−2πjγj2=ðb1þb2Þ − jS11j2�: ð22Þ

This formula is exact. Hence, without approximations

Ne
exðþ∞Þ ¼

X
p

e−2πjγj2=ðb1þb2Þ: ð23Þ

As N → ∞, we replace
P

p =N →
R
π
−π dp=ð2πÞ and find

the density of excitations (per unit cell) in the thermo-
dynamic limit

ρeexðþ∞Þ ¼ exp

�
− 2πðJ21 þ J22Þ

jb1 þ b2j
�
I0

�
4πJ1J2
b1 þ b2

�
; ð24Þ

where I0ðxÞ is the modified Bessel function of the first
kind. In the leading order of small b1 þ b2,

ρeexðþ∞Þ ≈ exp

�
− 2πðJ1 − J2Þ2

jb1 þ b2j
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1 þ b2
p
2π

ffiffiffiffiffiffiffiffiffiffiffiffi
2J1J2

p : ð25Þ

This is the central result of our Letter. For any J1 ≠ J2, the
excitations on the even sublattice are suppressed exponen-
tially rather than by a power law. The latter is found only for
a symmetric case with J1 ¼ J2 but b1 > b1. Complete
exact solution for this special case is presented in
Appendix D of Supplemental Material [15]. We also note
that the above solutions do not smoothly carry over the
b1 ¼ b2 point, to which our exact MLZ analysis does not
apply because of the degeneracy of the time-dependent
Zeeman coupling.
Equation (25) does not contradict the Kibble-Zurek

mechanism, because the power law for excitation density
does appear on the odd-site sublattice. Consider

No
exðþ∞Þ ¼

X
p

ðjS33j2 þ jS31j2Þ: ð26Þ
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Here, jS31j2 can be obtained exactly, because jS31j ¼ jS13j.
According to Eq. (22), it produces an exponentially sup-
pressed contribution. We also prove in Appendix C of
Supplemental Material [15] that

P
p jS33j2 ≥

P
p jS11j2, so

No
ex ≥ Ne

ex. Hence, only S33 contains the information about
the power-law scaling.
The exact crossings of the second and third adiabatic

levels of Hp happen at p ¼ 0 and time moments

t1;2 ¼∓ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J1J2=ðb1b2Þ

p
: ð27Þ

We interpret t1;2 as the moments of the phase transitions.
By setting t ¼ t1;2 þ δt and p ¼ δp, with small δp and δt,
we find an effective Hamiltonian for the interactions within
the subspace of Hp spanned by the two eigenstates, whose
energies become nearly degenerate near the critical points:

Ĥeff ≈
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J1J2b1b2

p ð ffiffiffiffiffiffiffiffiffi
J1J2

p
δpτ̂x þ

ffiffiffiffiffiffiffiffiffiffi
b1b2

p
δtτ̂zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðb2J1 þ b1J2Þðb1J1 þ b2J2Þ

p ; ð28Þ

where τ̂x and τ̂z are the Pauli operators that act in subspace
of two states with closest to one Dirac point energies. The
Landau-Zener formula applied to Hamiltonian (28) returns
the probability of a nonadiabatic excitation after a transition
through one Dirac point:

Pex ¼ exp

�
−

2πðδpÞ2ðJ1J2Þ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðb2J1 þ b1J2Þðb1J1 þ b2J2Þ
p

�
: ð29Þ

Our system passes through two Dirac points. An
excitation created near the first point should remain excited
after the second point. The system may also not produce an
excitation during the first crossing but produce it at the
second one. Generally, there is interference between such
evolution paths (Stueckelberg’s oscillations). If we disre-
gard this interference, the probabilities of the two possibil-
ities simply sum, i.e.,

P2ex ¼ 2Pexð1 − PexÞ: ð30Þ

Integrating P2ex over δp ∈ ð−∞;þ∞Þ, we find that in the
adiabatic limit

X
p

jS33j2
N

≈
2 −

ffiffiffi
2

p

4πðJ1J2Þ3=4
½ðb2J1 þ b1J2Þðb1J1 þ b2J2Þ�1=4:

ð31Þ

This is the estimate of the excitation density on the odd-site
sublattice in the nearly adiabatic limit. In Fig. 3, the
numerical simulations confirm the power-law scaling trend
for the parameter dependence in Eq. (31), which is
modulated by fast Stueckelberg oscillations. We also note
that Eq. (31) reproduces correctly the scaling prediction of

the uniform chain model (4) if we set b1 ¼ b2 ¼ 2β
and J1 ¼ J2.
Hence, as t → þ∞, the remaining excitations on the

odd-site sublattice are suppressed according to a power law,
in contrast to the exponential suppression on the even-site
sublattice. At the intermediate moment t ¼ 0, excitations
take the form of superpositions of kinks. The asymmetry
appears then, too; i.e., some of the excitations are expo-
nentially suppressed in comparison to the others, but this
effect does not have a simple interpretation in terms of
different kink types. We leave such details to Appendix E of
Supplemental Material [15].
Our results illustrate how the Kibble-Zurek mechanism

works when a part of a system is not observable. The latter
may happen in atomic gases, in which optically observable
spins interact via spins of other atomic species [21]. In the
asymmetric Ising chain, if the spin excitations on the odd
sites are not observable, the even-site spins still create a
visible ferromagnetic state at zero external field and
polarize when the external field is strong. Hence, looking
only at the even spins, one can expect that this system goes
through the same phase transitions as the uniform Ising
chain and, thus, produces excitations with a power-law
scaling. Our solution shows, however, that all observable
spin excitations are suppressed in this case exponentially.

FIG. 3. (a) Density of excitations of the even-site sublattice as a
function of the quenching rate, b1 ¼ 2β, b2 ¼ β. The black solid
curve and blue dashed curve correspond to, respectively, the exact
prediction (24) at J1 ¼ J2 ¼ 1.5 and perturbed coupling J1 ¼ 2,
J2 ¼ 1. (b) The numerically calculated transition probabilityP

p jS33j2 at J1 ¼ 2, J2 ¼ 1, b1 ¼ 2β, and b2 ¼ β. Triangles are
the numerical data. The black dashed line is the power-law
scaling (31) prediction. The insets resolve the fast Stueckelberg
oscillations around the mean power-law tail. The filled triangles
are the same points in the main figure and the insets.
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A power-law tail of the excitations is hidden then in the
nonobservable spins.
In summary, we demonstrated that small differences

between interacting spins in a simple spin chain can lead to
an exponentially large effect when passing slowly through
a phase transition. The underlying mechanism arguably
processes universalities: Strong but symmetric interactions
compete with each other near a critical point, where subtle
interaction differences play a decisive role. As long as a
symmetry breaking opens the gap for certain types of
quasiparticles while not destroying the critical point, the
exponentially large density separation of different quasi-
particles should happen after the passage through the phase
transition independently of the model’s microscopic details.
The Kibble-Zurek mechanism for Ising-type quantum

phase transition has been recently studied experimentally in
ultracold atoms [9]. In such systems, an asymmetry can be
introduced by placing atoms in a periodic potential without
the inversion symmetry. If the time-linear field ramp is
induced by changing the ac frequency in the rotating-wave
approximation, the sweeping of the detuning frequency
across an optical resonance effectively mimics the field
changes in range Bz ∈ ðþ∞;−∞Þ [22,23]. Hence, the
demonstration of our effect requires only simple modifi-
cation of the control protocols in already accessible for
studies dynamic phase transitions.
Let us also speculate about possible applications.

Different isotopes have different spin interactions in an
ultracold atomic mixture [24]. Hence, an adiabatic passage
through a quantum critical point can induce spin excitations
in this mixture, overwhelmingly, for only one of the
isotopes. One can then separate such excited atoms using
the magnetic deflection approach from Ref. [25] and, thus,
develop a technology for isotope separation. The asym-
metry of matter and antimatter in our Universe may also be
viewed now as a result of a hypothetical transition through
a quantum critical point during cosmic inflation, when the
matter could be excited from the vacuum via quantum
nonadiabatic processes [26,27].
The dynamic phase transitions are found broadly, from

cosmological models to the experiments with supercon-
ductors and ultracold atoms. They are likely responsible for
the scaling of mistakes that limit the quantum annealing
computation techniques [28]. Fortunately, different systems
show universal behavior, which is driven by relatively
simple effects near the critical point. The quasiparticle
separation is one of such effects that remain relevant near
the critical point and, thus, can be used for control of
complex quantum systems.
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Department of Energy, Office of Science, Basic Energy
Sciences, Materials Sciences and Engineering Division,
Condensed Matter Theory Program. B. Y. also acknowl-
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Studies.
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