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The accurate computation of ground and excited states of many-fermion quantum systems is one of the
most consequential, contemporary challenges in the physical and computational sciences whose solution
stands to benefit significantly from the advent of quantum computing devices. Existing methodologies
using phase estimation or variational algorithms have potential drawbacks such as deep circuits requiring
substantial error correction or nontrivial high-dimensional classical optimization. Here, we introduce a
quantum solver of contracted eigenvalue equations, the quantum analog of classical methods for the
energies and reduced density matrices of ground and excited states. The solver does not require deep
circuits or difficult classical optimization and achieves an exponential speed-up over its classical
counterpart. We demonstrate the algorithm though computations on both a quantum simulator and two
IBM quantum processing units.
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Introduction.—Quantum computing has the potential to
remove the exponential scaling of the simulation of many-
fermion quantum systems by the direct representation and
manipulation of quantum states [1–36]. Algorithms for
solving the energy eigenvalue equation of many-fermion
systems include quantum phase estimation (QPE) [7,17],
adiabatic state preparation (ASP) [9], and the variational
quantum eigensolver (VQE) [10,12,14,15,22]. QPE
requires deep circuits with substantial error correction
and ASP utilizes a slow and long time evolution with
the computational costs of both methods quickly outpacing
the capabilities of near-term quantum computers. While
VQE has shown practical improvements over QPE and
ASP, it suffers from high-dimensional classical optimiza-
tion over a nonideal surface, typically relying upon
derivative-free optimization [37] whose computational cost
increases rapidly with system size. Here, we introduce a
quantum eigenvalue solver that solves a contraction (or
projection) of the eigenvalue equation for efficient, scalable
molecular simulations on quantum computers.
We develop a novel quantum eigensolver that optimizes

the lowest energy eigenvalue by solving a contracted
eigenvalue equation. The projection of the Schrödinger
equation onto two-particle transitions from the wave
function is known as the two-particle contracted
Schrödinger equation (CSE) [38–48]. Here, we consider
the anti-Hermitian part of the CSE known as the two-
particle anti-Hermitian CSE (ACSE) [49–59], which has
been used in many-electron quantum theory to solve for the
ground- and excited-state energies and properties of
strongly correlated atoms and molecules [60–67]. As
shown previously, the solution of the ACSE has a close

connection to the variational minimization of the energy
with respect to a series of two-body unitary transformations
[49–51,68]. The gradient of the energy with respect to the
two-body unitary transformations is the residual of the
ACSE, and hence, the gradient with respect to these
transformations vanishes if and only if the ACSE is
satisfied [49,50,68]. In the classical algorithms the solution
of the ACSE for the two-particle reduced density matrix
(2-RDM) is indeterminant without reconstruction of the
3-RDM [43,45,49–55,69]. In the quantum algorithm,
however, we show that through the preparation and
measurement of the quantum state, the ACSE can be
solved for the 2-RDM without any reconstruction or
storage of the 3-RDM. The algorithm exhibits a potentially
exponential speed-up relative to the classical algorithm
with complete RDM reconstruction.
A quantum contracted-eigenvalue-equation solver for

solving the ACSE is applied to several problems on IBM
quantum computers and a quantum simulator. On a quantum
computer we solve for the ground-state dissociation of the
hydrogen molecule. Both energies and 2-RDMs are com-
puted. On a one-qubit IBM device we also solve a one-qubit
Hamiltonian to demonstrate the trajectory of the solution of
the ACSE in iteratively optimizing the ground-state energy.
Last, we compute the ground-state dissociation of the linear
H3 molecule on a quantum simulator. While the solution of
linear H3 by the classical algorithm yields a ground-state
energy that is limited by the accuracy of the approximate
cumulant reconstruction of the 3-RDM, the quantum-com-
puting algorithm yields a ground-state potential energy curve
that can be converged to the exact solution for all computed
internuclear distances.
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Theory.—We begin with the Schrödinger equation for a
many-electron quantum system

ðĤ − EÞjΨi ¼ 0; ð1Þ

with the Hamiltonian operator

Ĥ ¼
X

pqst

2Kpq
st â

†
pâ

†
qâtâs; ð2Þ

where 2K is the two-electron reduced Hamiltonian matrix,
containing the one- and two-electron integrals, and the
second-quantized operators â†p and âp create and annihilate
an electron in the spin orbital p, respectively. The projec-
tion (or contraction) of the Schrödinger equation onto
the space of two-electron transitions generates the CSE
[38–46], and the anti-Hermitian part of the CSE produces
the ACSE [49–56,69]

hΨj½â†i â†j âlâk; Ĥ�jΨi ¼ 0: ð3Þ

The ACSE is important for many-electron quantum sys-
tems, especially—as we show below—in quantum comput-
ing, because its residual contains the gradient for the
optimization of many-electron wave functions.
Consider the variational ansatz for the wave function in

which the wave function is iteratively constructed from
unitary two-body exponential transformations [49,50,68]

jΨnþ1i ¼ eϵÂn jΨni; ð4Þ

where Ân is an anti-Hermitian two-electron operator

Ân ¼
X

pqst

2Apq;st
n â†pâ

†
qâtâs: ð5Þ

The energy at the (nþ 1)th iteration through order ϵ is
given by

Enþ1 ¼ En þ ϵhΨnj½Ĥ; Ân�jΨni þOðϵ2Þ: ð6Þ

Consequently, the gradient of the energy with respect
to 2An is

∂En

∂ð2Aij;kl
n Þ ¼ −ϵhΨnj½â†i â†j âlâk; Ĥ�jΨni þOðϵ2Þ: ð7Þ

From this equation we observe two important facts
[49,50,68]: (1) the residual of the ACSE is the negative
of the energy gradient with respect to all two-body unitary
transformations parametrized by Ân and (2) the residual of
the ACSE with respect to Ψn vanishes if and only if the
sequence of wave functions has converged at n to a critical
point of the energy. It is known that the residual of the CSE
vanishes with respect to a wave function if and only if the

wave function is a solution of the Schrödinger equation
[43,70]. While the ACSE is a subset of the CSE [68], we
find for the calculations presented here that the wave
function solutions of the ACSE satisfy the Schrödinger
equation.
The ACSE can be solved to compute the 2-RDM directly

without storage of the many-electron wave function. In the
algorithm previously implemented on classical computers
[49–56,69], the wave function at the nth iteration is
substituted into the definition of the 2-RDM

2Dpq
st ¼ hΨjâ†pâ†qâtâsjΨi ð8Þ

to yield an expression for the 2-RDM at the (nþ 1)th
iteration

2Dpq;st
nþ1 ¼ 2Dpq;st

n þ ϵhΨnj½â†pâ†qâtâs; Ân�jΨni þOðϵ2Þ; ð9Þ

where the operator Ân can be selected to be the residual of
the ACSE, which causes the 2-RDM to follow the energy’s
gradient toward its minimum

2Aij;kl
n ¼ hΨnj½â†i â†j âlâk; Ĥ�jΨni: ð10Þ

By using the fact that Ân and Ĥ are two-body operators in
Eqs. (5) and (2), the 2-RDM at the (nþ 1)th iteration can
be expressed as a linear functional of the 1-, 2-, and 3-
RDMs at the nth iteration. The indeterminacy in these
recursion relations for the 2-RDM can be removed by
calculating the 3- through-N-RDMs at an exponential cost
or by reconstructing the 3-RDM approximately from the
2-RDM [49–52]. For example, the cumulant part of the
3-RDM in its cumulant expansion can be neglected or
approximated to provide a reconstruction of the 3-RDM in
terms of the 2-RDM [44,49,57].
We propose a novel algorithm for solving the ACSE for

the 2-RDM on the quantum computer, which is shown in
Table I. While the classical computer uses matrices and
vectors to represent quantum states, the quantum computer
allows us to prepare a form of the quantum state itself in
terms of qubits where the scaling of the preparation is
nonexponential [71] for states with polynomially scaling
Hamiltonians. Utilizing this capability, we prepare the wave
function at the (nþ 1)th in Eq. (4) on the quantum
computer (step 3 of Table I) and perform measurements
of its 2-RDM’s matrix elements in Eq. (8) on the quantum
computer (step 4). In step 5 we optimize the parameter ϵ,
which can be on the order of unity, by minimizing the
energy with respect to ϵ by a single-variable model-trust
Newtons method [72]. Before we can perform the prepa-
ration in step 3, however, we need to compute the 2Amatrix
by evaluating the residual of the ACSE. While we could
evaluate the ACSE on the classical computer using Eq. (3)
with cumulant reconstruction of the 3-RDM, we can
compute the residual of the ACSE on the quantum
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computer directly without a formal approximation. We
prepare the auxiliary states jΛ�

n i in step 1 of the algorithm

jΛ�
n i ¼ e�iδĤjΨni ð11Þ

where δ is a small nonnegative parameter and measure their
2-RDMs on the quantum computer to construct the residual
of the ACSE—the elements of the 2A matrix

2Aij;kl
n ¼ 1

2iδ
ðhΛþ

n jâ†i â†j âlâkjΛþ
n i − hΛ−

n jâ†i â†j âlâkjΛ−
n iÞ

þOðδ2Þ: ð12Þ

Because of statistical measurement noise, δ must be non-
infinitesimal which makes the ACSE residual formula in
Eq. (12) necessarily approximate. The unitary propagators
in steps 1 and 3 are implemented by first-order Trotter
expansions. The number of measurements in steps 2 and 4
is Oðr4Þ where r is the number of orbitals [or less with
parallel tomography]. For each measurement we re-prepare
the wave function from Ψ0. Steps 1–6 can be repeated until
convergence. In practice the rate of convergence seems to
be linear or better. The algorithm can be initiated with any
initial wave function including the mean-field (Hartree-
Fock) wave function. The sources of error in the quantum
solution of the ACSE for the 2-RDM include the noise on
the quantum computer as well as the approximate gradient
and limited tomography statistics. Even with these errors,
however, the algorithm can build upon an initial Hartree-
Fock wave function to treat strongly correlated molecular
quantum systems. Importantly, steps 1–4 provide exact
expressions without reconstruction of higher RDMs, yield-
ing an exponential advantage over classical algorithms in
obtaining the 2D and 2A matrices.
Results.—To illustrate the solution of the ACSE on the

quantum computer, we apply the quantum ACSE algorithm
to three applications: the solution of a generic one-
qubit Hamiltonian and the dissociation of the H2 and H3

molecules. Solutions of the one-qubit and H2 Hamiltonians
are performed on the one- and five-qubit IBM quantum
computers Armonk and Ourense, respectively [73]. The H2

and H3 calculations use the compact and Jordan-Wigner

mappings [82], respectively. The dissociation of H3 is
implemented on a quantum simulator to probe the method’s
accuracy in the absence of noise.
We first examine the solution of a one-qubit Hamiltonian

Ĥ ¼ 1
2
ðσ̂x − σ̂y þ σ̂zÞ where σ̂x, σ̂y, and σ̂z are the Pauli

matrices in the x, y, and z directions. In the basis of the
Bloch sphere we can express the Hamiltonian and the initial
density matrix as vectors ð1;−1; 1Þ and (0,0,1), respec-
tively. Beginning at the initial density-matrix vector, the
solution from the ACSE reaches the ground-state vector,
indicated by v⃗−, in approximately eight iterations on the
quantum computer, as shown in Fig. 1. The Â vector,
indicated in Fig. 1 at each iteration by an arrow, is
orthogonal to the plane formed by the Hamiltonian and
density-matrix vectors.
Second, we compute the dissociation of the hydrogen

molecule in the minimal Slater-type orbital (STO-3G) basis
set. On the quantum computer the molecule is represented
in the ACSE algorithm by a two-qubit compact mapping.
The energy at each iteration in the solution of the ACSE for
H2 at 2 Å is shown in Fig. 2(a). The ACSE energy from a
quantum simulator converges to the energy from full

TABLE I. Quantum ACSE algorithm for 2-RDM optimization.

Algorithm: Quantum ACSE method for 2-RDM optimization.
Given n ¼ 0 and 0 < δ ≤ 1.
Choose initial wave function jΨ0i.
Repeat until jj2Anjj is small.

Step 1: Prepare jΛ�
n i from jΛ�

n i ¼ e�iδĤjΨni,
Step 2: Measure 2An from 2Aij;kl

n ¼ ð1=2iδÞðhΛþ
n jâ†i â†j âlâkjΛþ

n i − hΛ−
n jâ†i â†j âlâkjΛ−

n iÞ,
Step 3: Prepare jΨnþ1i from jΨnþ1i ¼ eϵÂjΨni,
Step 4: Measure 2Dnþ1 from 2Dpq;st

nþ1 ¼ hΨnþ1jâ†pâ†qâtâsjΨnþ1i,
Step 5: Iterate steps 3 and 4 to minimize the energy with respect to ϵ,
Step 6: Set n ¼ nþ 1.

FIG. 1. For a 1-qubit Hamiltonian the solution of the quantum
ACSE converges to the ground state, indicated by v⃗−, in about 8
iterations on a 1-qubit IBM quantum computer.
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configuration interaction (FCI) in about 9 to 10 iterations.
The ACSE energy on the quantum computer converges in
approximately the same number of iterations to an energy
that is approximately 25 mhartrees higher than the FCI
energy. This error is due to the noise present on the
quantum computer; in fact, a nearly identical curve in
the iterations is generated by a quantum simulator with the
Qiskit noise model, a noise model based on the device T1,
T2, and readout parameters. Figure 2(b) shows the energy
dissociation curve of the hydrogen molecule. While the
noise error is visible in the potential energy curve from
the ACSE, the error is importantly uniform throughout the
curve, indicating that the ACSE algorithm is capturing the
significant electron correlation from spin entanglement in
the dissociation region.

Finally, we calculate the dissociation of the H3 molecule
in the minimal Slater-type orbital (STO-3G) basis set on a
quantum simulator without noise. The purpose of this
calculation is to examine the accuracy of the quantum
ACSE algorithm on an ideal, noise-free quantum computer.
Stretching the two bonds of the molecule equally causes a
Mott metal-to-insulator transition with the stretched geo-
metry being highly correlated due to nontrivial spin
entanglement [28]. The energy errors from the classical
and quantum ACSE algorithms, relative to the FCI energy,
are shown in Fig. 3. In the classical algorithm in Fig. 3
we evaluate 2A classically, that is with cumulant-based
reconstruction of the 3-RDM [44], but we evaluate 2D with
state preparation on a quantum simulator. The ACSE
algorithm developed previously on conventional computers
[49–59] uses cumulant reconstruction for both 2A and 2D.
Most strikingly, the energies from the quantum ACSE are
about 6 orders of magnitude more accurate than the
energies from the classical ACSE. Unlike the classical
ACSE algorithm in Fig. 3, the quantum ACSE algorithm
does not require any reconstruction approximation because
the updates of the 2A and 2D matrices are performed, in
principle exactly, through a combination of state prepara-
tion and tomography. Figure 3 also shows that the quantum
solution of the ACSE remains accurate at stretched bond
distances where the electron correlation—the deviation
from the Hartree-Fock solution—is significant.
Discussion and conclusions.—Key features of the quan-

tum algorithm for solving the ACSE include: (1) compu-
tation of the energy and 2-RDM without any approximate
reconstruction of higher RDMs as in the classical algorithm
and (2) evaluation of the energy gradient—residual of the
ACSE—on the quantum computer for accurate and

FIG. 2. For the H2 molecule the figure shows (a) the energy at
each iteration in the solution of the ACSE at an internuclear
distance R of 2 Å and (b) the energy dissociation curve of the
molecule. The error in the ACSE on the quantum computer, due
to noise, is fairly uniform throughout the dissociation, indicating
that the ACSE captures the spin entanglement. The sampling
error at each point is indicated by the line width.

FIG. 3. The errors in the potential energy curves from the equal-
bond dissociation of the H3 molecule, relative to FCI, are shown
for the classical and quantum ACSE algorithms with the quantum
ACSE being more accurate by 6 orders of magnitude. Dotted line
indicates “chemical accuracy” (1 kcal=mol).
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efficient gradient-based optimization. The ACSE algo-
rithm’s computation of the gradient on the quantum
computer offers a significant advantage over VQE algo-
rithms [10,12,14,15,22] that approximate the gradient on
the classical computer by derivative-free optimization
methods [37] like the simplex method that are limited to
hundreds of degrees of freedom. The ACSE also has much
lower tomography costs than Lanczos-based imaginary-
time evolution methods [20,24] that can require higher
RDMs. Unlike unitary coupled cluster which uses a single
unitary exponential transformation of commuting operators
[16], the ACSE method represents the wave function as a
product of unitary exponential transformations of two-
body, noncommuting operators that represent the higher
excitations as nontrivial products of two-body operators;
furthermore, the ACSE’s iterative approximation to the
construction of the wave function decreases Trotterization
errors, errors from the application of Trotter’s formula for
representing the exponential transformation on the quan-
tum computer.
The quantum algorithm for solving the ACSE provides a

direct computation of ground-state energies and 2-RDMs
with an efficient generation of the search direction from the
ACSE residual. In the context of quantum algorithms, it has
the benefits of good ansatz depth, modest tomography
requirements, and no derivative-free classical optimization.
Importantly, while the focus here is on the solution of
many-fermion systems, the ACSE algorithm is also appli-
cable to solving many-boson systems, and it can be
generalized with p-qubit contracted eigenvalue equations
and p-qubit RDMs to treat many-qubit systems governed
by arbitrary p-body interactions. Future work will also
explore the application of the ACSE algorithm to electronic
excited states and active-space calculations for the treat-
ment of strong electron correlation in larger molecules.
Because the quantum ACSE algorithm is an iterative
approach to computing the N-representable 2-RDM
[83–85] of a given eigenstate, it offers a polynomial-scaling
approach to computing energies and properties of strongly
correlated many-fermion quantum systems on both near-to-
intermediate-term and future quantum devices with appli-
cations across quantum chemistry and physics.
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