
 

Two Phases Inside the Bose Condensation Dome of Yb2Si2O7
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Recent experimental data on Bose-Einstein condensation of magnons in the spin-gap compound Yb2Si2O7

revealed an asymmetric Bose-Einstein condensation dome [G. Hester et al., Phys. Rev. Lett. 123, 027201
(2019)]. We examine modifications to the Heisenberg model on a breathing honeycomb lattice, showing that
this physics can be explained by competing anisotropic perturbations. We employ a gamut of analytical and
numerical techniques to show that the anisotropy yields a field driven phase transition from a state with
broken Ising symmetry to a phase that breaks no symmetries and crosses over to the polarized limit.
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In recent decades, models of localized spins have been
shown to contain a wealth of familiar and exotic phases of
matter. Interesting orders can be achieved by considering
models with competing interactions, which naively require
the satisfaction of incompatible constraints to achieve a
ground state. Nature’s creative mechanisms for resolving
these tensions within quantum mechanics are responsible
for much of the diversity of phenomena observed within
many-body theory [1–7].
A clear example of such physics is found in dimer

magnetism, where antiferromagnetic behavior is brought
into tension with polarizing magnetic fields [8–13]. In these
systems, spins tend to pair into singlets in the low-field
ground state. A simple example of this phenomenon is
realized in the antiferromagnetic Heisenberg model on the
breathing honeycomb lattice. As illustrated in Fig. 1(a),
each spin has a preferred neighbor due to lattice distortion
that picks out pairs of spins that dimerize in the
ground state.
Applying a magnetic field to the singlet state generically

leads to a Bose-Einstein condensation (BEC) transition
where a triplet band becomes degenerate with the S ¼ 0
ground state, creating a planar antiferromagnet. In typical
experiments [9], it has been found that strengthening
this field eventually polarizes the system; no other phase
transitions are observed. Recently, experiments on the
compound Yb2Si2O7 have challenged this paradigm by
suggesting the presence of an intermediate magnetic phase
with an unknown underlying order [8]. This Letter proposes
a modification to the Heisenberg model whose ground state
order is consistent with all available thermodynamic data and
allows for the possibility of such a phase diagram.
On the breathing honeycomb lattice, the Heisenberg

model in a magnetic field only realizes the previously
mentioned singlet, XY antiferromagnet, and polarized
phases. In order to model the additional phase observed

experimentally, we generalize the Heisenberg model by
introducing two forms of anisotropy:

H ¼
X
hiji;α

JαijS
α
i S

α
j − h

X
i∈A;α

gAzαSαi − h
X
j∈B;α

gBzαSαj : ð1Þ

Here i, j index lattice sites, A, B are sublattices, and
α ¼ x, y, z. The x, y, z directions correspond, respectively,

FIG. 1. Honeycomb lattice model and T ¼ 0 phase diagram.
(a) A section of the honeycomb lattice. Each spin (blue dots) has a
preferred neighbor (red bonds) which it interacts with more
strongly than others: J1 > J2. For h ¼ 0, the ground state is a
product of singlets along the red bonds. (b) Schematic T ¼ 0
phase diagram obtained from DMRG and mean-field theory.
From left to right, the phases are a global spin singlet, Z2

symmetry breaking antiferromagnet, canted antiferromagnet, and
the polarized phase. The critical points Hc1 and Hcm are in the
Ising universality class while Hc2 is a crossover.
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to the a�; b ¼ b�, and c axes of the C2/m lattice structure.
The sublattice dependence of the g tensor allows for a
staggered component gAzx ¼ −gBzx, which is essential to the
universal physics we will describe. The “minimal model”
for the physics of interest is significantly simpler: it is
sufficient to take Jyij > Jxij ¼ Jzij (for all i, j) and gzy ¼ 0, as
y is a principal axis. The more precise constraints discussed
below are imposed by consistency with experiments.
As we will see, there is a regime of parameters that yields

the phase diagram in Fig. 1(b). This phase diagram matches
thermodynamic data by providing a mechanism for break-
ing and restoring an Ising symmetry as an external
magnetic field is tuned. For Hc1 < H < Hm, the ground
state breaks a Z2 symmetry in spin space associated with
the global transformation Syi → −Syi , while forH > Hm the
system exhibits no symmetry breaking. Importantly, these
effects are observable with weak anisotropy: we believe this
can explain the coexistence of the familiar and unfamiliar
features observed in Yb2Si2O7 [8].
We will use a variety of complementary techniques to

develop a theory that accounts for the observations of
Yb2Si2O7. In order to motivate our model, Eq. (1), we
begin with a review of salient experimental facts. We then use
a linked cluster expansion to compute the triplon spectrum
and critical fields of the pure Heisenberg model,Hc1 andHc2 .
Our results are consistent with experimental findings and
confirm that the Heisenbergmodel captures important aspects
of the physics of Yb2Si2O7. Spin-wave theory is then applied
to the full Eq. (1) Hamiltonian to show that the perturbations
we have introduced produce dispersion relations that are
qualitatively consistent with neutron scattering data. We then
develop an understanding of the new order induced by these
perturbations through a self-consistent mean-field theory,
which reveals the previously undetermined ground state order
to be a canted antiferromagnet with a large staggered
magnetic susceptibility. This physical picture is then quanti-
tatively verified via a density matrix renormalization group
(DMRG) analysis, and our concluding remarks suggest
experimental tests of our proposal.
Experimental considerations.—Plausible modifications

to the Heisenberg model are strongly constrained by the
available experimental data. To establish constraints on the
parameters introduced in Eq. (1), we review the salient
experimental results [8]. (1) Critical fields and zero-field
specific heat are modeled well by the pure Heisenberg
model. In Ref. [8], it was demonstrated that the Heisenberg
model fits zero-field specific heat data. We will also show
that the Heisenberg model is consistent with the empirical
values ofHc1 andHc2 . (2) The XY antiferromagnet hosts an
approximate Goldstone mode. Within the energy resolution
of available data, there is a gapless mode in the band
structure of the planar antiferromagnet. (3) Singularities in
the specific heat present in weak fields vanish with
increasing field. In weak fields, an Ising-like singularity
is observed as a function of temperature. Increasing the

field to Hm ≈ 1.2 T removes the singularity and leads
to smooth behavior as a function of temperature. Ultra-
sound velocity and neutron scattering measurements offer
additional evidence of a phase transition at Hm.
Together, these points suggest that the Heisenberg model

provides a strong basis for an analysis of Yb2Si2O7.
However, it is clear that the ground state breaks different
(discrete) symmetries as a function of the magnetic field,
which is not a feature of the pure Heisenberg model.
Moreover, the ground state for H > Hm smoothly crosses
over to the polarized limit at H ¼ Hc2 .
Phenomenology of the model.—The perturbations to the

Heisenberg model that we have introduced are designed to
respect these experimental constraints, while providing a
mechanism for breaking and restoring an Ising symmetry as
a magnetic field is applied. The key changes are to the XY
Heisenberg couplings, Jyij ¼ ð1þ λÞJxij and a staggered
g-tensor component gzx ≪ gzz, gAzx ¼ −gBzx. By choosing
λ ≪ 1, the first two experimental points are addressed:
many qualitative features of the Heisenberg model are
preserved and the Goldstone mode is only weakly gapped.
The staggered g tensor creates a field-dependent competi-
tion between antiferromagnetic orders in the X-Y plane. In
weak magnetic fields (Hc1 < H < Hm), the YY coupling
dominates, and the ground state breaks the Z2 spin
symmetry of the Hamiltonian. In larger magnetic fields
(H > Hm), no symmetry is broken because the staggered g
tensor selects a unique antiferromagnetic order. Since it
breaks no symmetries, this state can cross over smoothly to
the polarized limit (H > Hc2).
We note that a staggered g tensor is forbidden by the

inversion symmetry of the C2/m crystal structure. However,
weak deviations from this structure due to lattice distortions
are not ruled out by available data. Such a distortion has
clear experimental signatures (see the concluding section).
The required weakness of our staggered g tensor (see
Fig. 5 and surrounding discussions) is consistent with a
distortion-based explanation.
Furthermore, we have explored similar models with

uniform g tensors and found that they do not reproduce
the phase diagram of Fig. 1. Essentially, a uniform g tensor
does not lead to a field-dependent competition between
antiferromagnetic orders: instead, spins simply have a
polarization in the X-Z plane proportional to the effective
field in each direction. While we have not completely ruled
out the possibility that a model with inversion symmetry
could produce the correct universal physics, we believe that
no such model is consistent with the aforementioned
experimental constraints.
The parameters we will choose throughout this Letter,

unless otherwise noted, are λ ¼ 0.03 and gzx ¼ gzz=100.
We take the x component of the Heisenberg coupling to be
the value obtained experimentally for the isotropic
Heisenberg model, Jx1 ¼ 0.2173 meV, Jx2 ¼ 0.0891 meV.
Conversions to physical magnetic fields are done with g
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factors measured in [8]. We have found that our results do
not qualitatively depend on these choices except in our
DMRG analysis, where this issue is discussed.
Linked-cluster expansion.—Here we simplify to the

isotropic Heisenberg model (λ ¼ 0) and assume the z axis
is a principal axis of g (gzα ∝ δzα). We will perturbatively
compute the critical fields of the BEC transition and show
that the result is consistent with experiments. In the limit
J2 ¼ h ¼ 0, the ground state of Eq. (1) is a collection of
independent spin singlets. For finite J2 with J2=J1 ≪ 1, the
ground state remains in the S ¼ 0 sector with a gap to
mobile triplet excitations. We compute the spectrum of
these “single-particle” states with the linked-cluster for-
malism. This yields a perturbative expression in J2=J1 that
accurately describes the thermodynamic limit [14–16].
The resulting spectrum has a minimum at k ¼ 0, and we

find that (defining J2=J1 ¼ α)

ωðk ¼ 0Þ ¼ J1

�
1 − α − α2 þ 5

16
α3 þOðα4Þ

�
: ð2Þ

For h ≠ 0, the Sz ¼ 1 triplet band decreases linearly in
energy leading to a gap closing. The resulting BEC
transition has been studied extensively [9,17–22].
Choosing the couplings and gyromagnetic factors reported
in Ref. [8], we find the critical field Hc1 ≈ 0.434 T, in
rough agreement with the experimental data. The upper
critical field, Hc2 , of the Heisenberg model can be calcu-
lated exactly by considering the energetic cost of a spin flip
in the polarized phase. We find Hc2 ¼ J1 þ 2J2 ≈ 1.42 T,
also in agreement with experiment.
The singlet ansatz for the ground state is not correct in

the presence of anisotropy when h ≠ 0. However both
mean-field and DMRG analyses indicate that the
system becomes effectively paramagnetic below Hc1 in
the presence of weak anisotropy (see Fig. 4). The agree-
ment between these critical fields and the experimental
results provides an a posteriori justification for our focus
on perturbative adjustments to the Heisenberg model.
Spin-wave theory.—By introducing anisotropy to the

Heisenberg couplings, we have broken the XY symmetry
of the model. We therefore anticipate that the spectrum is
gapped, and the Goldstone mode observed experimentally
is in fact massive. Here we will use linear spin-wave theory
to compute the spectrum and show that the resulting bands
are qualitatively consistent with neutron scattering data.
(Additional details of spin-wave theory are available in the
Supplemental Material [23].)
Our ansatz for the classical spin orientations on sub-

lattices A, B is for a canted antiferromagnet:

SA ¼ Sðsin θ cosϕ; sin θ sinϕ; cos θÞ
SB ¼ Sð− sin θ cosϕ;− sin θ sinϕ; cos θÞ: ð3Þ

Minimizing the Hamiltonian as a function of θ;ϕ yields
two solutions. In weak fields,

cos θ ¼ hz
SðJ̄z þ J̄yÞ

cosϕ ¼ hxðJ̄z þ J̄yÞ
ðJ̄y − J̄xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ðJ̄z þ J̄yÞ2 − h2z

q : ð4Þ

Here J̄α ¼ Jα1 þ 2Jα2; hz ¼ gzzh; hx ¼ gzxh. The critical
field Hm ≈ 1.2 T is given by the condition cosϕ ¼ 1 and
agrees with experimental data. For H > Hm, the system
transitions to the solution

ϕ ¼ 0

sin θ ¼ hz tan θ − hx
SðJ̄z þ J̄xÞ

: ð5Þ

Using the Holstein-Primakoff mapping to bosons, we
obtain a quadratic Hamiltonian that can be diagonalized using
standard techniques [24–26]. From the resulting dispersion,
we extract the band gap as a function of the magnetic field
(Fig. 2). The bands are gapped everywhere except at Hm,
which separates the spin-wave solutions. The value of the gap
exceeds experimental results; however, key qualitative details
that we expect are universal are captured [23].
Cluster mean-field theory.—In order to describe the

novel phase observed in Yb2Si2O7, we move on to develop
a qualitative understanding of the ground states of Eq. (1).
We begin by formulating a mean-field theory using the
bipartite structure of the honeycomb lattice. Let MA;MB
denote the average magnetic moments on sublattices A, B.
The enhanced coupling J1 between neighbors along y ¼ b
suggests that the fundamental degree of freedom is a dimer
containing spins SA;SB embedded in an effective field. The
Hamiltonian is

H ¼ Jα1S
α
AS

α
B þ 2Jα2ðSαAMα

B þ SαBM
α
AÞ

− h
X
α

ðgAzαSαA þ gBzαSαBÞ: ð6Þ

We assume gzx ≪ gzz. The Eq. (6) Hamiltonian is
analyzed with self-consistent methods, starting with an

FIG. 2. Band gap as a function of field in linear spin-wave
theory. Other than the phase transition between spin-wave
solutions at H ¼ Hm (see text), the system is gapped with an
energy scale near the energy resolution of available neutron
scattering data. ForH > Hc2 the band gap scales linearly with H.
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ansatz for MA;MB and calculating new values
Mi ≡ hψ jSijψi, where jψi is the instantaneous ground
state. These values are updated until convergence is
achieved.
For sufficiently small gzx, we find that the solution in

Fig. 3 is energetically favored. For small fields (H < Hc1),
the solution is weakly magnetic due to the staggered field
induced by gzx. Between the critical fields Hc1 < H < Hc2 ,
two phases appear, distinguished by the staggered moment
My. The first (H < Hm) exhibits Z2 symmetry breaking
and accounts for the singularity observed in the specific
heat; the latter breaks no symmetries and crosses over
smoothly to the polarized limit, as required by the absence
of thermodynamic singularities. This previously unidenti-
fied phase is a canted antiferromagnet.
We note the existence of another mean-field solution in

which My ¼ 0 everywhere. This case does not support the
experimental data as it has no symmetry breaking. The
energetic favorability of one solution over another depends
on the precise anisotropy parameters chosen; it is unclear
how quantum fluctuations will impact that selection.
Furthermore, it is not obvious that the interdimer coupling
J2 is sufficiently small to justify a mean-field description.
To address these concerns, we employ DMRG to inves-
tigate the stability of our results. There we find that both
mean-field solutions survive quantum fluctuations and
remain energetically competitive. Furthermore, there is a
regime of parameters in which the solution in Fig. 3 is
favored. Additional mean-field data is available in the
Supplemental Material [23].
DMRG analysis.—To verify the mean-field solution, we

use DMRG to compute ground state expectation values
[27]. This tensor network method efficiently simulates
systems that are well described by the matrix product state

ansatz [28–32]. Our system is studied on a cylinder with a
width of four dimers and 128 total spins.
We use a single-site representation of the renormalized

tensor network to update each step [33] with the Eq. (1)
Hamiltonian. To guarantee that the proper symmetry sector
is obtained, we apply pinning fields on the open boundaries
of the system to break theZ2 symmetry of the Hamiltonian.
The pinning field is removed after two DMRG sweeps, and
we find that in the symmetry-breaking region this produces
a lower-energy state than an unbiased DMRG.
From the resulting ground-state wave function, local

measurements of quantities Mα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNs

i¼1hŜαi i2
q

=Ns are

performed. The results are shown in Fig. 4 and qualitatively
match those from mean-field theory. The nonzero value of
My for Hc1 < H < Hm requires Z2 symmetry breaking.
This symmetry is restored for H > Hm, allowing for a
smooth crossover to the polarized limit at Hc2 . The regime
Hm < H < Hc2 is distinguished from the polarized limit by
the large staggered susceptibility of X moments and the
continued growth of the Z magnetization. Similar methods
allow for direct comparison to ultrasound velocity data (see
the Supplemental Material [23]).
The results in Fig. 4 are found with gxz ¼ gzz=500. This

value is arbitrary and can affect which mean-field solution
is obtained; to account for this, Fig. 5 shows the depend-
ence of the symmetry-breaking order parameter My on gzx
in a fixed magnetic field. The solutions were found by first
tuning toH ¼ 0.9 T with pinning fields. The pinning fields
are then removed, and gzx is increased. The ground state
changes from a Y-ordered antiferromagnet to a state where
My ¼ 0 as gzx increases. The instability of the symmetry-
breaking solution to anisotropy in the g tensor reveals that
gzx is necessarily small. This is consistent with the fact that
a nonzero gzx requires deviations from the C2/m crystal
structure currently proposed experimentally; such

FIG. 3. Spin expectation values as a function of magnetic field
obtained from mean-field theory (λ ¼ 0.03, gzx ¼ gzz=100). Note
that the X and Y moments are staggered, while Z is uniform. The
presence of a nonzero My for Hc1 < H < Hm indicates Z2

symmetry breaking and corresponds to the standard magnetic
phase observed on the high-field side of the BEC phase transition
without anisotropy. The range Hm < H < Hc2 corresponds to a
canted antiferromagnet that breaks no symmetries and crosses
over to the saturated regime at Hc2 .

FIG. 4. Spin expectation values as a function of magnetic field
from DMRG (λ ¼ 0.03; gzx ¼ gzz=500Þ. The qualitative agree-
ment with Fig. 3 confirms that the universal physics obtained via
mean-field theory is accurate. The data again indicate a field-driven
phase transition from a broken symmetry state (Hc1 < H < Hm)
to a state that breaks no symmetries (Hm < H < Hc2 ).
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distortions are expected to be weak. The qualitative features
of the phase diagram should be robust to other
perturbations.
Conclusions.—With a variety of theoretical techniques,

we have constructed an explanation for the experimentally
proposed phase diagram of Yb2Si2O7. These techniques
complement each other; each of them supports the physical
picture presented in this Letter. We emphasize again that
weak perturbations to the Heisenberg model can explain the
observed thermodynamic responses of the material, with an
associated reduction of crystallographic symmetry.
Experimental verification of these details remains cru-

cial, and our theory suggests natural tests of itself. The
structure of local magnetic moments in the material can be
probed with nuclear magnetic resonance techniques. In
particular, observation of a staggered magnetization along
a� in the regime Hm < H < Hc2 would confirm that a C2/
m forbidden, staggered g tensor is crucial to describing
Yb2Si2O7. Furthermore, more precise neutron scattering
measurements may reveal a spin gap for Hc1 < H < Hm,
the magnitude of which will constrain the XYanisotropy of
our model.
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