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We uncover a novel and robust phenomenon that causes the gradual self-replication of spatiotemporal
Kerr cavity patterns in cylindrical microresonators. These patterns are inherently synchronized multi-
frequency combs. Under proper conditions, the axially localized nature of the patterns leads to a
fundamental drift instability that induces transitions among patterns with a different number of rows. Self-
replications, thus, result in the stepwise addition or removal of individual combs along the cylinder’s axis.
Transitions occur in a fully reversible and, consequently, deterministic way. The phenomenon puts forward
a novel paradigm for Kerr frequency comb formation and reveals important insights into the physics of
multidimensional nonlinear patterns.
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The demonstration of a microresonator temporal soliton
[1] and its subsequent stabilization [2,3] yielded and
strongly boosted a wide range of applications of the
associated stable frequency combs, such as frequency
synthesis [4], spectroscopy [5], communications [6], and
ranging [7], among many others (see, e.g., Refs. [8–10] for
reviews). Aside from the widely employed single-soliton
states, the interest in other nonlinear waves such as Turing
rolls is also growing rapidly, as these waves are also very
useful and may result in more efficient frequency comb
generation [11–17]. Nevertheless, ongoing research on
microresonator frequency combs remains strongly focused
on essentially one-dimensional geometries, while potential
advantages or qualitatively new ways to control and
manipulate combs in multidimensional cavity geometries
are not yet clearly identified.
In this Letter, we show that cylindrical Kerr micro-

resonators, the natural two-dimensional extension of
microrings [see Fig. 1(a)], offer a remarkably robust
mechanism to replicate and erase frequency combs along
the axial direction. Each comb corresponds to a row of a
spatiotemporal hexagonal pattern constituted by a periodic
arrangement of solitonic pulses, so that the N-row spatio-
temporal patterns localized along the axial direction are
regarded asN-frequency comb states (cf. Fig. 1). Individual
combs are added or removed one by one in a stepwise
deterministic way solely by tuning the width of the external
laser pump beam. A powerful feature of the multicomb
states introduced here is that all combs tend to be identical
to each other; thus, matching among their free spectral
range (FSR) occurs naturally, a property that is of great
importance in the areas of high-precision dual-comb

spectroscopy [18], ultrafast communications [6], and
radio-frequency (rf) links [19]. In addition, such combs
are inherently synchronized, which is fundamentally attrac-
tive [20] and may be beneficial for imaging applications
requiring many combs [21]. In practice, multifrequency
comb states may be realized with microrods [22],
pumped from rectangular waveguide or flattened fibers,
or integrated microcylinders [23] coupled to integrated
waveguides.
From a fundamental standpoint, the effect uncovered

here is related to the phenomenon of pattern self-replication,
which typically manifests as spot multiplications in
reaction-diffusion systems [24–26] or pattern expansions
in thermoconvection [27]. Self-replications include the
symmetry-preserving transformations occurring within a
given pattern family, as is the case here, in contrast to
symmetry transformations, widely studied in optics and
other contexts [28–30]. Replication phenomena are to date
regarded as uncontrollable expansions [31], the taming of
which represents a fundamental cornerstone yet to be
achieved. In sharp contrast with previously known mecha-
nisms [27,31], we show that the spatiotemporal patterns
emerging after addition or removal of the entire new rows
remain locked. The key ingredients for such transformations
are the existence of drift instability and intertwined families
of nonlinear waves—rather general features of dissipative
systems. These two features simultaneously present in our
system enable stepwise self-replications and self-erasures of
the multifrequency comb states. Also, our findings are
important for the fundamental understanding of pattern
transformations and the physics of boundary effects such
as stabilization [32] and geometrical frustration [29].
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Applying the modal expansion approach [33,34] to a
cylindrical microresonator, in which light orbits around
its cross section and diffracts along its axis [cf.
Fig. 1(a)], yields the generalized damped-driven nonlinear
Schrödinger equation [35,36]:

∂tψ ¼ i
2
½∂2

x þ ∂2
z �ψ − ½1þ iδ�ψ þ ijψ j2ψ þ ihðz; x; tÞ;

h ¼ h0eð−z
2=σ2zÞξðx; tÞ; ð1Þ

accounting, respectively, for dispersion, diffraction, losses
(unity), cavity-laser detuning, Kerr nonlinearity, and pump
(see Supplemental Material for model scaling and deriva-
tion [37]). Similar models can be used to study comb
formation in microbottles [38]. Here, we are primarily
concerned with the effects arising in the multifrequency
comb states due to a variable pump localization along z
(cf. Figs. 1 and 2). However, realistic driving beams will
typically couple to a relatively small region of the cylinder’s
circumference [cf. Fig. 1(a)], which is at rest in the lab
frame. Thus, the intracavity field ψ describing the circulat-
ing state and the localized pump h have a huge velocity
mismatch ∼c. In order to take into account the dynamical
effects introduced by their relative motion, which could
have potentially degraded the practical usefulness of our
results [see discussion around Figs. 3 and 4], we will also
account for pump localization in x through the function
ξðx; tÞ≡P∞

m¼−∞ exp ð−½x −mΔx − vgt�2=σ2xÞ, where Δx
is the normalized circumference, x ∈ ½−Δx=2;þΔx=2Þ,
and vg is the normalized group velocity at the pump
frequency [37]. Below, we present our results in normalized
units, but we provide the link to a reference geometry,
consisting of a hollow silica glass cylinder of R ¼ 200 μm
radius, wall thickness ≈1 μm, and quality factor

Q ≈ 7.6 × 106, pumped at λp ¼ 1.55 μm. For the sake of
estimates only, we considered the pump as a cw state at
λp ¼ 1.55 μm propagating through a rectangular bus wave-
guide with a gap of 300 nm with the cylinder. The pump
values will be translated into power per millimeter along
the z direction [37].
The patterns we address exist with anomalous dispersion

along x and z, easily attainable with microcylinders.
Dispersion along x is readily controlled via the pump’s
frequency and wall width, and dispersion along z is already
anomalous unless modal interactions are specifically engi-
neered [39].
Among all possible pattern solutions of Eq. (1), we focus

on hexagonal patterns [40] due to their dominant relative
stability [41,42]. Hereafter, PN denotes hexagonal patterns
with N rows along z and fixed separation xp ¼ 32=7
between spots along x [cf. Figs. 1(i)–1(viii)]. Stationary
patterns PN and their stability are computed by imposing
∂tψ ¼ 0 and assuming uniform in x pump [ξðx; tÞ ¼ 1].
Figures 1(b) and 1(c) show the existence and stability
branches as norm U ≡ R xp

0 dx
R∞
−∞ dzjψðx; zÞ − ψ0ðx; zÞj2

versus cavity detuning for patterns with odd (even) N, Podd
(Peven), for σz ¼ 15 and σz ¼ 55 (ψ0 is the background
field). Patterns P1–P8 are shown in insets (i)–(viii). A
salient feature of the UðδÞ branches is the tilted snaking
structure: Patterns with larger N are stable and exist at
lower δ values, while patterns with low N exist at higher δ
values, where instabilities typically dominate in 2D
[43,44]. The gradual shift in δ of the existence regions
is a consequence of the nonuniformity of the pump,
h, along z. Indeed, for uniform in z pump, all saddle node
bifurcations, i.e., the points where ∂δU → ∞, are
(almost) aligned in δ, yielding straight snaking [45,46].
While snaking is straightforwardly expected by simple

FIG. 1. (a) Sketch of the driven microcylinder. (b),(c) Snaking diagrams of pattern families Podd and Peven on the ðδ; UÞ plane for
σz ¼ 15 and σz ¼ 55, respectively. Thick traces denote stability. Dots in (c) correspond to the profiles jψðx; zÞj, shown in insets (i)–
(viii). Panels’ areas span over x ∈ ½−16; 16Þ (full circumference, 2πR), z ∈ ½−20; 20�. Here, h0 ¼ ξðxÞ ¼ 1. Scaling:
Δδ ¼ 0.1 ⇔ 15.6 MHz, σz ¼ 10 ⇔ 4.9 mm, Δz ¼ 40 ⇔ 1.96 cm, and h ¼ 1 ⇔ 46 mW/mm.
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inspection of the pattern profiles [46], the tilted snaking
is a rare feature (see, e.g., Ref. [47]) of central importance
for this Letter, as it avoids multistability within a pattern

family and, thus, enables the pattern self-replicating
(-erasure) phenomenon we address below (cf. Ref. [37],
Sec. V).
Stability properties of patterns are crucial to elucidate the

replication (erasure) process. Thus, all stable domains
found in the UðδÞ snaking diagrams [cf. Figs. 1(b) and
1(c)] for σz ≤ 100 are presented in Figs. 2(a) and 2(b) for
Podd and Peven, respectively. Stable patterns exist only in
the black areas, while unstable patterns exist within the
light colored areas: purple (gray) for Podd (Peven). A crucial
feature is that, in the interval around δ ∈ ½0.75; 0.9�, the
instability bands of the two families do not overlap, and,
hence, at a given σz there exists at least one stable PN .
Additionally, unstable bands are characterized by the sole
presence of axial drift (exponential) instability, which
induces translation of the pattern along z (upward or
downward depending on the particular noise seed). Note
that many types of pattern instabilities exist which could
heavily distort and potentially destroy them [48]. However,
regarding Fig. 2, they are found only for δ≳ 0.9, i.e.,
outside the interval we address (see [37] for an example of
oscillatory instability).
The axial drift instability, crucial for comb replication,

arises in our case due to the nonuniform pump field along z.
In the uniform pump case, nonlinear states have neutral
(or Goldstone) internal modes [49] associated to displace-
ments along z, universally characterized by zero growth
rate. However, when the pump is modulated in z, the
axial translational invariance is broken and the neutral
mode eigenvalue deviates from zero to acquire a positive
(negative) real part, thus leading to patterns that are
unstable (stable) to drift along z (see, e.g., discussions in
Refs. [50,51]). In our case, and consistent with formal

FIG. 2. Existence and stability charts for (a) Podd and (b) Peven
on the ðδ; σzÞ plane [h0 ¼ 1, ξðxÞ ¼ 1]. Patterns are stable
(unstable) within the black (colored) areas. Domains for extended
hexagonal pattern (σz → ∞) are also shown. The red contour
encloses the MI area. (c) Drift eigenvalue vs σz at δ ¼ 0.84 for the
patterns in (a) and (b). Areas in (c) [color matched with (a) and
(b)] mark the drift bands for Podd (purple) and Peven (gray).
Scaling: Δδ ¼ 0.1 ⇔ 15.6 MHz and σz ¼ 10 ⇔ 4.9 mm.

FIG. 3. Pattern self-replication and self-erasure under the two-dimensional localization of the pump, h0 ≈ 9, σx ¼ 2, and varying σzðtÞ
with δ ¼ 0.84. (a),(b) Evolution of σz and center of mass. Dots in (a) and (b) mark the entrance into the drift-instability regions for Podd
(purple) and Peven (gray). The inset in (a) shows the drift bands for ξ ¼ 1 [cf. Fig. 2(c)]. The dashed green rectangle enlarges the
P2 → P3 transition from (b), while distributions jψðx; zÞj2 correspond to labels (i)–(iii). Axes of panels (i)–(iii): x ∈ ½−16; 16Þ (full
circumference), z ∈ ½−12; 12�. Scaling: σz ¼ 10 ⇔ 4.9 mm, hzi ¼ 1 ⇔ 490 μm, t ¼ 1 ⇔ 103 round-trips, τ ≈ 6.4 ps, total propagated
time ∼2.9 ms, Δz ¼ 24 ⇔ 1.2 cm, σx ¼ 2 ⇔ πR=8, and h0 ¼ 9 ⇔ 3 W/mm.
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theorems for conservative systems [51], the perturbed
neutral eigenvalue remains real but oscillates around
zero with σz, as shown in Fig. 2(c). The regions where
ReðλÞ > 0 correspond to drift instabilities for Podd (purple)
and Peven (gray) pattern families. The amplitude of oscil-
lations of ReðλÞ (plotted in log scale) decreases very fast as
σz increases, because the system tends to recover its axial
translational invariance and drift-free dynamics. In the flat
pump limit, multicomb states become infinitely extended
hexagonal patterns, whose existence and stability domain is
shown in Figs. 2(a) and 2(b).
In addition to the above stability properties, we highlight

the presence of a modulation instability (MI) region,
encircled in Figs. 2(a) and 2(b) by the red line, where
stable patterns P1;2 are easily excitable by the cw pump.
The simultaneous presence of MI and alternating drift
instability bands for our specific choice of the pump
amplitude h0 ¼ 1 is essential for the dynamical trans-
formations between Podd and Peven families and could
not be anticipated a priori. Indeed, for h0 > 1 the MI
region expands, but the stability domains shrink, and vice
versa for h0 < 1 (not shown).
A sequence of stepwise pattern transitions of the type

PN → PNþ1 (PN−1) leading to deterministic self-replication
(-erasure) are shown in Fig. 3. Simulation of Eq. (1) was
initiated with the P2 pattern obtained at δ ¼ 0.84, σz ¼ 10,
σx ¼ 2, and h0 ≈ 9. Here we take into account that in the
experiment the pump profile is typically localized in x;
hence, pump amplitude h0 was adjusted to closely corre-
spond to the dynamics observed for uniform in x pump. As
time goes on, the pump width σz is gradually increased up
to 60, where excitation of the stable P8 pattern is observed,
and then decreased back down to 10, leading to restoration
of the stable P2 pattern [see Figs. 3(a) and 3(b)] (note that
the total pump power increases with σz, as h0 is constant).
Transitions are triggered at the times (marked by red and
blue dots) where varying σz drives PN outside its stability
region and into the region where it becomes unstable
and starts to drift spontaneously upward or downward
in z [see gray (purple) shaded regions for Peven (Podd)
families]. When σz increases (decreases), the drift induces
the transition PN → PNþ1 ðPN−1Þ, as expected from
Figs. 2(a) and 2(b). While axially locked patterns have
zero average axial position [cf. Figs. 1(i)–1(vii)],
hzi≡ R xp

0 dx
R
∞
∞ zdzjψ − ψ0j2=U ≡ 0, the z-drifting tran-

sient states do not, and thus the transitions PN → PN�1 are
characterized by pronounced peaks in hzi vs t, apparent in
Fig. 3(b). These peaks show that transitions at larger σz
(larger N) take more time, in agreement with the fast
decrease of the growth rate ReðλÞ with pump width [Fig. 2
(c)] (see, e.g., Ref. [52] for a discussion on drift speeds).
Details of the transition P2 → P3 are illustrated within the
dashed rectangle in Fig. 3(b), and selected transient pattern
profiles are shown in Figs. 3(i)–3(iii). We emphasize that
coexistence of a drift unstable family and a stable one is

crucial for the reported effects. Fortunately, stationary
pattern states with nonzero average position, hzi ≠ 0, were
not found to exist within the investigated parameter space
(cf. Ref. [37], Sec. V). States of this sort may exist with
modulated background, and, if they exist, they could have
frustrated comb replications.
We note that the drift instability bands in Fig. 3(a) do not

coincide exactly with those in Fig. 2(c), plotted also as an
inset in Fig. 3(a), for clarity. This is because patterns in
Figs. 1 and 2 were calculated for unit ξðx; tÞ (flat in x
pump), while the propagation takes into account the x
localization of ξðx; tÞ. The impact of ξðx; tÞ, representing a
nonautonomous perturbation, is well tested in 1D, but it is
not in 2D. Hence, our results show the robustness of the
comb replication effect in the regime where the steady state
calculations of Figs. 1 and 2 cannot be easily done, a feature
that is crucial for the experimental demonstration of the
phenomenon. We stress that other case-specific autono-
mous perturbations arising from linear dispersion [53–61]
and moderate Raman effect [62–65] are perfectly compat-
ible with robust nonlinear states and, for the sake of
generality, are not considered here.
Figures 4(a)–4(c) show multicomb spectra in the ðkx; zÞ

plane of patterns P1 (a), P3 (b), and P8 (c), obtained under
the same conditions as those in Fig. 3 at constant σz (see
labels). One-dimensional spectra at specific z values are
shown in Figs. 4(d)–4(f). Because patterns include seven
periods in the x direction [cf. Figs. 3(i)–3(iii)], all spectra
feature high-amplitude peaks separated by seven FSRs. The
other much weaker resonances appear due to x dependence
of ξðx; tÞ, as noted previously [66], and tend to zero in
the case ξðx; tÞ ¼ 1 [37]. In the geometry considered above,
the spectra in Figs. 4(e) and 4(f) span from 1.35 to 1.82 μm,

FIG. 4. Robust multicomb spectra for (a) P1, (b) P3, and (c) P8

(σz in labels) for the same parameters as Fig. 3. (d)–(f) Spectra at
the selected z positions (white arrows) in (a)–(c), respectively. All
power levels are in the range ½−150; 0� dB. The background
field ψ0ðx; zÞ was subtracted prior to Fourier transforms.
Scaling: Δκx¼1⇔1=40μm−1. At λp¼1.55 μm, Δκx ¼ 48 ⇔
λ0 ∈ ½1.35; 1.82� μm. Δz ¼ 40 ⇔ 1.96 cm.
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corresponding to an equivalent duration of individual
solitons of about ∼200 fs.
In closing, we stress that the phenomenon described here

reveals a mechanism that replicates and erases frequency
combs along the axis of a cylindrical microresonator in a
stepwise deterministic manner, affording a robust way to
manipulate multifrequency combs states in the form of
spatiotemporal patterns. The frequency combs tend to be
exact copies of each other and are inherently synchronized.
These two features are promising for important applications
such as spectroscopy, communications, rf links, and im-
aging. This effect is based on a fundamental drift instability
that dynamically connects pattern families with odd and
even numbers of rows (or combs) while preserving the
overall symmetry. Emerging patterns via these transforma-
tions are locked and robust. Our results also bring a
fundamental understanding of the mechanism of pattern
transformations, a phenomenon of major importance in the
general context of nonlinear waves in dissipative media.
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